Nanoelectronics requires the development of a priori technology evaluation for materials and device design that takes into account quantum physical effects and the explicit chemical nature at the atomic scale. Here, we present a cross-platform quantum transport computation tool. Using first-principles electronic structure, it allows for flexible and efficient calculations of materials transport properties and realistic device simulations to extract current-voltage and transfer characteristics. We apply this computational method to the calculation of the mean free path in silicon nanowires with dopant and surface oxygen impurities. The dependence of transport on basis set is established, with the optimized double zeta polarized basis giving a reasonable compromise between converged results and efficiency. The current-voltage characteristics of ultrascaled (3 nm length) nanowire-based transistors with p-i-p and p-n-p doping profiles are also investigated. It is found that charge self-consistency affects the device characteristics more significantly than the choice of the basis set. These devices yield source-drain tunneling currents in the range of 0.5 nA (p-n-p junction) to 2 nA (p-i-p junction), implying that junctioned transistor designs at these length scales would likely fail to keep carriers out of the channel in the off-state.

1.
G.
Declerck
, “
A look into the future of nanoelectronics
,”
Dig. Tech. Pap. – Symp. VLSI Technol.
2005
,
6
10
(
2005
).
2.
N.
Singh
,
A.
Agarwal
,
L. K.
Bera
,
T. Y.
Liow
,
R.
Yang
,
S. C.
Rustagi
,
C. H.
Tung
,
R.
Kumar
,
G. Q.
Lo
,
N.
Balasubramanian
, and
D.-L.
Kwong
, “
High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices
,”
IEEE Electron Device Lett.
27
,
383
(
2006
).
3.
H. -S. P.
Wong
, “
Beyond the conventional transistor
,”
Solid-State Electron.
49
,
755
762
(
2005
).
4.
K.
Trivedi
,
H.
Yuk
,
H. C.
Floresca
,
M. J.
Kim
, and
W.
Hu
, “
Quantum confinement induced performance enhancement in sub-5-nm lithographic Si nanowire transistors
,”
Nano Lett.
11
,
1412
1417
(
2011
).
5.
M.
Nolan
,
S.
O'Callaghan
,
G.
Fagas
, and
J. C.
Greer
, “
Silicon nanowire band gap modification
,”
Nano Lett.
7
,
34
(
2007
).
6.
R.
Rurali
, “
Structural, electronic, and transport properties of silicon nanowires
,”
Rev. Mod. Phys.
82
,
427
(
2010
).
7.
H.
Pan
and
Y. P.
Feng
, “
Semiconductor nanowires and nanotubes: Effects of size and surface-to-volume ratio
,”
ACS Nano
2
,
2410
2414
(
2008
).
8.
N. R.
Das
,
M. W.
Shinwari
,
M. J.
Deen
, and
J.-S.
Lee
, “
Electron states in a silicon nanowire in the presence of surface potential and field
,”
Nanotechnology
23
,
415201
(
2012
).
9.
L.
Ansari
,
B.
Feldman
,
G.
Fagas
,
J.-P.
Colinge
, and
J. C.
Greer
, “
Subthreshold behavior of junctionless silicon nanowire transistors from atomic scale simulations
,”
Solid-State Electron.
71
,
58
62
(
2012
).
10.
E. J.
Nowak
,
I.
Aller
,
T.
Ludwig
,
K.
Kim
,
R. V.
Joshi
,
C.-T.
Chuang
,
K.
Bernstein
, and
R.
Puri
, “
Turning silicon on its edge [double gate CMOS/FinFET technology]
,”
IEEE Circuits Devices Mag.
20
,
20
31
(
2004
).
11.
B.
Davari
,
R. H.
Dennard
, and
G.
Shahidi
, “
CMOS scaling for high performance and low power-the next ten years
,”
Proc. IEEE
83
,
595
(
1995
).
12.
A. M.
Ionescu
and
H.
Riel
, “
Tunnel field-effect transistors as energy-efficient electronic switches
,”
Nature
479
,
329
(
2011
).
13.
J.
Hu
,
T. W.
Odom
, and
C. M.
Lieber
, “
Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes
,”
Acc. Chem. Res.
32
,
435
445
(
1999
).
14.
G.
Fagas
and
J. C.
Greer
, “
Ballistic conductance in oxidized Si nanowires
,”
Nano Lett.
9
,
1856
1860
(
2009
).
15.
M. Y.
Bashouti
,
R. T.
Tung
, and
H.
Haick
, “
Tuning the electrical properties of Si nanowire field-effect transistors by molecular engineering
,”
Small
5
,
2761
(
2009
).
16.
Z.
Yun
,
C.
Rivas
,
R.
Lake
,
K.
Alam
,
T. B.
Boykin
, and
G.
Klimeck
, “
Electronic properties of silicon nanowires
,”
IEEE Trans. Electron. Devices
52
,
1097
1103
(
2005
).
17.
M. T.
Bjork
,
H.
Schmid
,
J.
Knoch
,
H.
Riel
, and
W.
Riess
, “
Donor deactivation in silicon nanostructures
,”
Nat. Nanotechnol.
4
,
103
107
(
2009
).
18.
F. M.
Armando
,
G.
Fagas
, and
J. C.
Greer
, “
Deformation potentials and electron−phonon coupling in silicon nanowires
,”
Nano Lett.
10
,
869
873
(
2010
).
19.
D.
Esseni
,
P.
Palestri
, and
L.
Selmi
,
Nanoscale MOS Transistors: Semi-Classical Transport and Applications
(
Cambridge University Press
,
2011
).
20.
M.
Macucci
,
G.
Iannaccone
,
J.
Greer
,
J.
Martorell
,
D. W. L.
Sprung
,
A.
Schenk
,
I. I.
Yakimenko
,
K.-F.
Berggren
,
K.
Stokbro
, and
N.
Gippius
, “
Status and perspectives of nanoscale device modelling
,”
Nanotechnology
12
,
136
142
(
2001
).
21.
J.
Taylor
,
H.
Guo
, and
J.
Wang
, “
Ab initio modeling of quantum transport properties of molecular electronic devices
,”
Phys. Rev. B
63
,
245407
(
2001
).
22.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejon
,
J.
Taylor
, and
K.
Stokbro
, “
Density-functional method for nonequilibrium electron transport
,”
Phys. Rev. B
65
,
165401
(
2002
).
23.
S.-H.
Ke
,
H. U.
Baranger
, and
W.
Yang
, “
Electron transport through molecules: Self-consistent and non-self-consistent approaches
,”
Phys. Rev. B
70
,
085410
(
2004
).
24.
R.
Gutierrez
,
G.
Fagas
,
G.
Cuniberti
,
F.
Grossmann
,
R.
Schmidt
, and
K.
Richter
, “
Theory of an all-carbon molecular switch
,”
Phys. Rev. B
65
,
113410
(
2002
).
25.
L.
Ansari
,
B.
Feldman
,
G.
Fagas
,
J.-P.
Colinge
, and
J. C.
Greer
, “
Simulation of junctionless Si nanowire transistors with 3 nm gate length
,”
Appl. Phys. Lett.
97
,
062105
(
2010
).
26.
S.
Migita
,
Y.
Morita
,
M.
Masahara
, and
H.
Ota
, “
Fabrication and demonstration of 3-nm-channel-length junctionless field-effect transistors on silicon-on-insulator substrates using anisotropic wet etching and lateral diffusion of dopants
,”
Jpn. J. Appl. Phys., Part 1
52
,
04CA01
(
2013
).
27.
B.
Aradi
,
B.
Hourahine
, and
T.
Frauenheim
, “
DFTB+, a sparse matrix-based implementation of the DFTB method
,”
J. Phys. Chem. A
111
,
5678
5684
(
2007
).
28.
D.
Sharma
,
H. H.
Arefi
, and
G.
Fagas
, “
Atomic basis sets for first-principles studies of Si nanowires
,”
Comput. Theor. Chem.
991
,
32
39
(
2012
).
29.
S.
Goedecker
, “
Linear scaling electronic structure methods
,”
Rev. Mod. Phys.
71
,
1085
1123
(
1999
).
30.
M.
Strange
,
I. S.
Kristensen
,
K. S.
Thygesen
, and
K. W.
Jacobsen
, “
Benchmark density functional theory calculations for nanoscale conductance
,”
J. Chem. Phys.
128
,
114714
(
2008
).
31.
C. W.
Bauschlicher
,
J. W.
Lawson
,
A.
Ricca
,
Y.
Xue
, and
M. A.
Ratner
, “
Current-voltage curves for molecular junctions: The effect of CI substituents and basis set composition
,”
Chem. Phys. Lett.
388
,
427
(
2004
).
32.
J. A.
Driscoll
and
K.
Varga
, “
Convergence in quantum transport calculations: Localized atomic orbitals versus nonlocalized basis sets
,”
Phys. Rev. B
81
,
115412
(
2010
).
33.
C.
Herrmann
,
G. C.
Solomon
,
J. E.
Subotnik
,
V.
Mujica
, and
M. A.
Ratner
, “
Ghost transmission: How large basis sets can make electron transport calculations worse
,”
J. Chem. Phys.
132
,
024103
(
2010
).
34.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
, “
Ab initio molecular simulations with numeric atom-centered orbitals
,”
Comput. Phys. Commun.
180
,
2175
(
2009
).
35.
T.
Ozaki
, “
Variationally optimized atomic orbitals for large-scale electronic structures
,”
Phys. Rev. B
67
,
155108
(
2003
).
36.
T.
Ozaki
and
H.
Kino
, “
Efficient projector expansion for the ab initio LCAO method
,”
Phys. Rev. B
72
,
045121
(
2005
).
37.
See http://www.openmx-square.org/ for source code availability, manual, and examples.
38.
G.
Fagas
, “
Vibrational properties of complex solids
,” Ph.D. dissertation (
Lancaster University
,
2000
).
39.
G.
Fagas
,
G.
Tkachov
,
A.
Pfund
, and
K.
Richter
, “
Geometrical enhancement of the proximity effect in quantum wires with extended superconducting tunnel contacts
,”
Phys. Rev. B
71
,
224510
(
2005
).
40.
G.
Fagas
,
A.
Kambili
, and
M.
Elstner
, “
Complex-band structure: A method to determine the off-resonant electron transport in oligomers
,”
Chem. Phys. Lett.
389
,
268
(
2004
).
41.
M.
Shelleya
,
N.
Poilvertb
,
A. A.
Mostofi
, and
N.
Marzari
, “
Automated quantum conductance calculations using maximally-localised Wannier functions
,”
Comput. Phys. Commun.
182
,
2174
, (
2011
).
42.
A.
Calzolari
,
N.
Marzari
,
I.
Souza
,
and M.
Buongiorno Nardelli
, “Ab initio transport properties of nanostructures from maximally localized Wannier functions,”
Phys. Rev. B
69
,
035108
(
2004
).
43.
I.
Rungger
and
S.
Sanvito
, “
Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition
,”
Phys. Rev. B
78
,
035407
(
2008
).
44.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
1999
).
45.
J. P.
Colinge
,
Finfets and Other Multi-Gate Transistors
(
Springer
,
2008
).
46.
T.
Markussen
,
R.
Rurali
,
A.-P.
Jauho
, and
M.
Brandbyge
, “
Theory put into practice: First-principles modeling of transport in doped silicon nanowires
,”
Phys. Rev. Lett.
99
,
076803
(
2007
).
47.
M. V.
Fernandez-Serra
,
Ch.
Adessi
, and
X.
Blase
, “
Surface segregation and backscattering in doped silicon nanowires
,”
Phys. Rev. Lett.
96
,
166805
(
2006
).
48.
Y.
Cui
,
X.
Duan
,
J.
Hu
, and
C. M.
Lieber
, “
Doping and electrical transport in silicon nanowires
,”
J. Phys. Chem. B
104
,
5213
(
2000
).
49.
J.-P.
Colinge
, “
Multiple-gate SOI MOSFETs
,”
Solid-State Electron.
48
,
897
905
(
2004
).
You do not currently have access to this content.