Ohmic RF-MEMS switches hold much promise for low power wireless communication, but long-term degradation currently plagues their reliable use. Failure in these devices occurs at the contact and is complicated by the fact that the same asperities that bear the mechanical load are also important to the flow of electrical current needed for signal processing. Materials selection holds the key to overcoming the barriers that prevent widespread use. Current efforts in materials selection have been based on the material's (or alloy's) ability to resist oxidation as well as its room-temperature properties, such as hardness and electrical conductivity. No ideal solution has yet been found via this route. This may be due, in part, to the fact that the in-use changes to the local environment of the asperity are not included in the selection criteria. For example, Joule heating would be expected to raise the local temperature of the asperity and impose a non-equilibrium thermal gradient in the same region expected to respond to mechanical actuation. We propose that these conditions should be considered in the selection process, as they would be expected to alter mechanical, electrical, and chemical mechanisms in the vicinity of the surface. To this end, we simulate the actuation of an Ohmic radio frequency micro electro mechanical systems switch by using a multi-scale method to model a current-carrying asperity in contact with a polycrystalline substrate. Our method couples continuum solutions of electrical and thermal transport equations to an underlying molecular dynamics simulation. We present simulations of gold-nickel asperities and substrates in order to evaluate the influence of alloying and local order on the early stages of contact actuation. The room temperature response of these materials is compared to the response of the material when a voltage is applied. Au-Ni interactions are accounted for through modification of the existing Zhou embedded atom method potential. The modified potential more accurately captures trends in high-temperature properties, including the enthalpy of mixing and melting temperatures. We simulate the loading of a contacting asperity to several substrates with varying Ni alloying concentrations and compare solid solution strengthening to a phase-separated system. Our simulations show that Ni concentration and configuration have an important effect on contact area, constriction resistance, thermal profiles, and material transfer. These differences suggest that a substrate with 15 at. % Ni featuring phase segregation has fewer early markers that experimentally have indicated long-term failure.

1.
J. J.
Yao
,
J. Micromech. Microeng.
10
,
R9
(
2000
).
2.
S.
Lucyszyn
,
IEE Proc.: Sci., Meas. Technol.
151
,
93
(
2004
).
3.
C.
Fung
, in
2005 IEEE International Reliability Physics Symposium Proceedings: 43rd Annual
(
IEEE
,
2005
), pp.
312
316
.
4.
R. A.
Coutu
,
J. R.
Reid
,
R.
Cortez
,
R. E.
Strawser
, and
P. E.
Kladitis
,
IEEE Trans. Compon. Packag. Technol.
29
,
341
(
2006
).
5.
M.
Sørensen
,
M.
Brandbyge
, and
K.
Jacobsen
,
Phys. Rev. B
57
,
3283
(
1998
).
6.
A.
Fortini
,
M. I.
Mendelev
,
S.
Buldyrev
, and
D.
Srolovitz
,
J. Appl. Phys.
104
,
074320
(
2008
).
7.
L.
Chen
,
H.
Lee
,
Z. J.
Guo
,
N. E.
McGruer
,
K. W.
Gilbert
,
S.
Mall
,
K. D.
Leedy
, and
G. G.
Adams
,
J. Appl. Phys.
102
,
074910
(
2007
).
8.
N. E.
McGruer
,
G. G.
Adams
,
L.
Chen
,
Z. J.
Guo
, and
Y.
Du
, in
19th IEEE International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2006
), pp.
230
233
.
9.
J.
Song
and
D. J.
Srolovitz
,
Scr. Mater.
57
,
885
(
2007
).
10.
J.
Song
and
D. J.
Srolovitz
,
J. Appl. Phys.
104
,
124312
(
2008
).
11.
C. C.
Lo
,
J. A.
Augis
, and
M. R.
Pinnel
,
J. Appl. Phys.
50
,
6887
(
1979
).
12.
R. A.
Coutu
,
P. E.
Kladitis
,
K. D.
Leedy
, and
R. L.
Crane
,
J. Micromech. Microeng.
14
,
1157
(
2004
).
13.
Z.
Yang
,
D. J.
Lichtenwalner
,
A. S.
Morris
,
J.
Krim
, and
A. I.
Kingon
,
J. Microelectromech. Syst.
18
,
287
(
2009
).
14.
Y. H.
Jang
and
J. R.
Barber
,
J. Appl. Phys.
94
,
7215
(
2003
).
15.
J.
David Schall
,
C. W.
Padgett
, and
D. W.
Brenner
,
Mol. Simul.
31
,
283
(
2005
).
16.
C. W.
Padgett
and
D. W.
Brenner
,
Mol. Simul.
31
,
749
(
2005
).
17.
D. L.
Irving
,
C. W.
Padgett
, and
D. W.
Brenner
,
Modell. Simul. Mater. Sci. Eng
17
,
015004
(
2009
).
18.
J. W.
Crill
,
X.
Ji
,
D. L.
Irving
,
D. W.
Brenner
, and
C. W.
Padgett
,
Modell. Simul. Mater. Sci. Eng
18
,
034001
(
2010
).
19.
S.
Balay
,
W. D.
Gropp
,
L. C.
McInnes
, and
B. F.
Smith
, in
Modern Software Tools in Scientific Computing
, edited by
E.
Arge
,
A. M.
Bruaset
, and
H. P.
Langtangen
(
Birkhäuser Press
,
1997
), pp.
163
202
.
20.
S.
Balay
,
J.
Brown
,
K.
Buschelman
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L. C.
McInnes
,
B. F.
Smith
, and
H.
Zhang
, PTESc website, http://www.mcs.anl.gov/petsc (
2012
).
21.
S.
Balay
,
J.
Brown
,
K.
Buschelman
,
V.
Eijkhout
,
W. D.
Gropp
,
D.
Kaushik
,
M. G.
Knepley
,
L. C.
McInnes
,
B. F.
Smith
, and
H.
Zhang
,
PETSc Users Manual
(
Argonne National Laboratory
,
2012
).
22.
W. G.
Hoover
,
Lecture Notes in Physics
(
Springer-Verlag
,
Berlin
,
1986
), vol.
258
.
23.
X. W.
Zhou
,
H. N. G.
Wadley
,
R. A.
Johnson
,
D. J.
Larson
,
N.
Tabat
,
A.
Cerezo
,
A. K.
Petford-Long
,
G. D. W.
Smith
,
P. H.
Clifton
,
R. L.
Martens
, and
T. F.
Kelly
,
Acta Mater.
49
,
4005
(
2001
).
24.
P.
Derlet
and
H.
Van Swygenhoven
,
Phys. Rev. B
67
,
024113
(
2003
).
25.
M.
Daw
and
M.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
26.
R. A.
Johnson
,
Phys. Rev. B
37
,
3924
(
1988
).
27.
R. A.
Johnson
,
Phys. Rev. B
39
,
12554
(
1989
).
28.
H. N. G.
Wadley
,
X.
Zhou
,
R. A.
Johnson
, and
M.
Neurock
,
Prog. Mater. Sci.
46
,
329
(
2001
).
29.
D. J.
Oh
and
R. A.
Johnson
,
J. Mater. Res.
3
,
471
(
1988
).
30.
N. S.
Weingarten
,
W. D.
Mattson
, and
B. M.
Rice
,
J. Appl. Phys.
106
,
063524
(
2009
).
31.
R. O.
Jones
and
O.
Gunnarsson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
32.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
33.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
34.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
35.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
36.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
37.
A.
Caro
,
D.
Crowson
, and
M.
Caro
,
Phys. Rev. Lett.
95
,
075702
(
2005
).
38.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
39.
B.
Predel
,
Landolt-Bornstein, Group IV Physical Chemistry—Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Volume 5—Electronic Materials and Semiconductors
(
Springer-Verlag
,
1998
).
40.
J. R.
Morris
and
X.
Song
,
J. Chem. Phys.
116
,
9352
(
2002
).
41.
A. F.
Crawley
and
D. J.
Fabian
,
J. Inst. Met.
94
,
39
(
1966
).
42.
Y.
Purohit
,
L.
Sun
,
D. L.
Irving
,
R. O.
Scattergood
, and
D. W.
Brenner
,
Mater. Sci. Eng., A
527
,
1769
(
2010
).
43.
A.
Detor
and
C.
Schuh
,
Acta Mater.
55
,
371
(
2007
).
44.
A.
Detor
and
C.
Schuh
,
Acta Mater.
55
,
4221
(
2007
).
45.
P.
Shanthraj
,
O.
Rezvanian
, and
M. A.
Zikry
,
J. Microelectromech. Syst.
20
,
371
(
2011
).
46.
R.
Timsit
, in
Electrical Contacts: Principles and Applications
, edited by
P. G.
Slade
(
Marcel Dekker
,
1999
), p.
1073
.
47.
F.
Kohlrausch
,
Ann. Phys.
306
,
132
(
1900
).
48.
J. A.
Greenwood
and
J. B. P.
Williamson
,
Proc. R. Soc. London, Ser. A
246
,
13
(
1958
).
49.
Z.
Yang
,
S.
Hoffmann
,
D. J.
Lichtenwalner
,
J.
Krim
, and
A. I.
Kingon
,
Appl. Phys. Lett.
98
,
044102
(
2011
).
50.
Z.
Yang
,
Contact Material Optimization and Contact Physics in Metal-contact Microelectromechanical Systems (MEMS) Switches
(
North Carolina State University
,
2008
).
51.
S. T.
Patton
and
J. S.
Zabinski
,
Tribol. Lett.
18
,
215
(
2005
).
You do not currently have access to this content.