Barium titanate (BT) ceramics with Ba/Ti ratios of 0.95 and 1.00 were synthesized using spark plasma sintering (SPS) technique. Dielectric spectroscopy (frequency range from 40 Hz to 1 MHz and temperature range from 300 K to 30 K) was performed on those ceramics (SPS BT). SPS BT showed extremely high permittivity up to ∼105, which can be referred to as colossal permittivity, with relatively low dielectric loss of ∼0.05. Data analyses following Debye relaxation and universal dielectric response models indicate that the origin of colossal permittivity in BT ceramics is the result of a hopping polaron within semiconducting grains in combination with interfacial polarization at the insulating grain boundary. Furthermore, the contributions of each polarization mechanism to the colossal permittivity in SPS BT, such as a hopping polarization, internal barrier layer capacitance effect, and electrode effect, were estimated.

2.
K.
Kinoshita
and
A.
Yamaji
,
J. Appl. Phys.
47
,
371
(
1976
).
3.
A. S.
Shaikh
,
R. W.
Vest
, and
G. M.
Vest
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
36
,
407
(
1989
).
4.
S.
Guillemet-Fritsch
,
Z.
Valdez-Nava
,
C.
Tenailleau
,
T.
Lebey
,
B.
Durand
, and
J. Y.
Chane-Ching
,
Adv. Mater.
20
,
551
(
2008
).
5.
T.
Takeuchi
,
C.
Capiglia
,
N.
Balakrishnan
,
Y.
Takeda
, and
H.
Kageyama
,
J. Mater. Res.
17
,
575
(
2002
).
6.
M. T.
Buscaglia
,
V.
Buscaglia
,
M.
Viviani
,
J.
Petzelt
,
M.
Savinov
,
L.
Mitoseriu
,
A.
Testino
,
P.
Nanni
,
C.
Harnagea
,
Z.
Zhao
, and
M.
Nygren
,
Nanotechnology
15
,
1113
(
2004
).
7.
B. R.
Li
,
X. H.
Wang
,
M. M.
Cai
,
L. F.
Hao
, and
L. T.
Li
,
Mater. Chem. Phys.
82
,
173
(
2003
).
8.
M. A.
Subramanian
,
D.
Li
,
N.
Duan
,
B. A.
Reisner
, and
A. W.
Sleight
,
J. Solid State Chem.
151
,
323
(
2000
).
9.
C.
Pecharroman
,
F.
Esteban-Betegon
,
J. F.
Bartolome
,
S.
Lopez-Esteban
, and
J. S.
Moya
,
Adv. Mater.
13
,
1541
(
2001
).
10.
Y. J.
Wu
,
S. H.
Su
,
J. P.
Cheng
, and
X. M.
Chen
,
J. Am. Ceram. Soc.
94
,
663
(
2011
).
11.
D. C.
Sinclair
,
T. B.
Adams
,
F. D.
Morrison
, and
A. R.
West
,
Appl. Phys. Lett.
80
,
2153
(
2002
).
12.
T. B.
Adams
,
D. C.
Sinclair
, and
A. R.
West
,
Adv. Mater.
14
,
1321
(
2002
).
13.
M.
Li
,
A.
Feteira
, and
D. C.
Sinclair
,
J. Appl. Phys.
98
,
084101
(
2005
).
14.
Z.
Valdez-Nava
,
S.
Guillemet-Fritsch
,
C.
Tenailleau
,
T.
Lebey
,
B.
Durand
, and
J. Y.
Chane-Ching
,
J. Electroceram.
22
,
238
(
2009
).
16.
S.
Lee
,
C. A.
Randall
, and
Z. K.
Liu
,
J. Am. Ceram. Soc.
91
,
1753
(
2008
).
17.
T.
Takeuchi
,
M.
Tabuchi
,
H.
Kageyama
, and
Y.
Suyama
,
J. Am. Ceram. Soc.
82
,
939
(
1999
).
18.
J. R.
Macdonald
,
Impedance Spectroscopy
(
Wiley
,
New York
,
1987
).
19.
M.
Maglione
,
Solid-State Science
, Springer Series of Topics, edited by
V. S.
Vikhnin
and
G. K.
Liu
, (
Springer
,
New York
,
2008
).
20.
Y. H.
Li
,
L.
Fang
,
L. J.
Liu
,
Y. M.
Huang
, and
C. Z.
Hu
,
Mater. Sci. Eng. B
177
,
673
(
2012
).
21.
A. K.
Jonscher
,
J. Phys. D: Appl. Phys.
32
,
R57
(
1999
).
22.
A. S.
Nowick
and
B. S.
Lim
,
Phys. Rev. B
63
,
184115
(
2001
).
23.
L. L.
Hench
and
J. K.
West
,
Principles of Electronic Ceramics
(
John Wiley & Sons
,
New York
,
1990
).
24.
S.
Komine
and
E.
Iguchi
,
J. Phys.: Condens. Matter
16
,
1061
(
2004
).
25.
G.
Arlt
,
D.
Hennings
, and
G.
Dewith
,
J. Appl. Phys.
58
,
1619
(
1985
).
26.
Z.
Valdez-Nava
,
C.
Tenailleau
,
S.
Guillemet-Fritsch
,
N.
El Horr
,
T.
Lebey
,
P.
Dufour
,
B.
Durand
, and
J. Y.
Chane-Ching
,
J. Phys. Chem. Solids
72
,
17
(
2011
).
27.
W.
Heywang
,
J. Mater. Sci.
6
,
1214
(
1971
).
28.
A. J.
Moulson
and
J. M.
Herbert
,
Electroceramics
(
Champman and Hall
,
London
,
1990
).
You do not currently have access to this content.