Effects of nanostructuring on the magnetostructural response of the near-equiatomic FeRh phase were investigated in nanocomposite materials synthesized by rapid solidification and subsequent annealing of an alloy of nominal atomic composition (FeRh)5Cu95. Transmission electron microscopy studies confirm attainment of a phase-separated system of nanoscaled (∼10–15 nm diameter) precipitates, consistent with FeRh embedded in a Cu matrix. These nanoprecipitates are crystallographically aligned with the coarse-grained Cu matrix and possess an L10-type (CuAu 1) structure, in contrast to the B2 (CsCl)-type structure of bulk FeRh. It is proposed that the face-centered cubic crystal structure of the Cu matrix serves as a template for the formation and stabilization of the L10 structure in the FeRh nanoprecipitates. Magnetic measurements highlight the existence of multiple magnetic phases in the material exhibiting spin-glass (T ≤ 15 K), ferromagnetic and paramagnetic (T > 20 K) behavior. A thermally hysteretic magnetic transition, remarkably similar to the magnetostructural transition of bulk CsCl-type FeRh reported at Tt = 370 K, is observed in the nanostructured material at 130 K. This result not only emphasizes the sensitivity of the magnetic and structural properties of FeRh to changes in microstructural scale, but also highlights the potential for tailoring magnetostructural transitions in functional materials systems via nanostructuring.

1.
S. B.
Roy
,
P.
Chaddah
,
V. K.
Pecharsky
, and
K. A.
Gschneidner
, Jr.
,
Acta Mater.
56
(
20
),
5895
(
2008
).
2.
V. D.
Buchelnikov
,
A. N.
Vasiliev
,
V. V.
Koledov
,
S. V.
Taskaev
,
V. V.
Khovaylo
, and
V. G.
Shavrov
,
Phys. Usp.
49
,
871
(
2006
).
3.
V. K.
Pecharsky
,
K. A.
Gschneidner
, Jr.
,
Y.
Mudryk
, and
D.
Paudyal
,
J. Magn. Magn. Mater.
321
,
3541
(
2009
).
4.
A.
Aliev
,
A.
Batdalov
,
S.
Bosko
,
V.
Buchelnikov
,
I.
Dikshtein
,
V.
Khovailo
,
V.
Koledov
,
R.
Levitin
,
V.
Shavrov
, and
T.
Takagi
,
J. Magn. Magn. Mater.
372
,
2040
(
2004
).
5.
D. F.
Ostergaard
,
J. Appl. Phys.
63
,
3185
(
1988
).
6.
S.
Otani
,
H.
Hiraishi
,
M.
Midorikawa
,
M.
Teshigawara
,
H.
Fujitani
, and
T.
Saito
,
Proc. SPIE
3988
,
2
(
2000
).
7.
D. S.
Rodbell
and
C. P.
Bean
,
J. Appl. Phys.
33
,
1037
(
1962
).
8.
I. P.
Suzdalev
,
Russ. J. Gen. Chem.
72
,
551
(
2002
).
9.
M.
Fallot
and
R.
Hocart
,
Rev. Sci.
8
,
498
(
1939
).
10.
F.
de Bergevin
and
L.
Muldawer
,
C. R. Acad. Sci.
252
,
1347
(
1961
).
11.
P. A.
Algarabel
,
M. R.
Ibarra
,
C.
Marquina
,
A.
del Moral
,
J.
Galibert
,
M.
Iqbal
, and
S.
Askenazy
,
Appl. Phys. Lett.
66
,
3061
(
1995
).
12.
M. P.
Annaorazov
,
S. A.
Nikitin
,
A. L.
Tyurin
,
K. A.
Asatryan
, and
A.
Kh. Dovletov
,
J. Appl. Phys.
79
,
1689
(
1996
).
13.
R. Z.
Levitin
and
B. K.
Ponomarev
,
J. Exp. Theor. Phys. (USSR)
23
,
984
(
1966
).
14.
15.
D.
Bloch
,
Ann. Phys.
1
,
93
(
1966
).
16.
A. I.
Zakharov
,
A. M.
Kadomtseva
,
R. Z.
Levitin
, and
E. G.
Ponyatovskii
,
J. Exp. Theor. Phys.
46
,
2003
(
1964
).
17.
J. S.
Kouvel
,
J. Appl. Phys.
37
,
1257
(
1966
).
18.
M.
Takahashi
and
R.
Oshima
,
Mater. Trans., JIM
36
,
735
(
1995
).
19.
Paul H. L.
Walter
,
J. Appl. Phys.
35
,
938
939
(
1964
).
20.
H.
Miyajima
,
S.
Yuasa
, and
Y.
Otani
,
Jpn. J. Appl. Phys., Part I
32
,
232
(
1993
).
21.
S.
Yuasa
,
H.
Miyajima
, and
Y.
Otani
,
J. Phys. Soc. Jpn.
63
,
3129
(
1994
).
22.
I.
Suzuki
,
T.
Koike
,
M.
Itoh
,
T.
Taniyama
, and
T.
Sato
,
J. Appl. Phys.
105
,
07E501
(
2009
).
23.
S.
Maat
,
J. U.
Thiele
, and
E. E.
Fullerton
,
Phys. Rev. B
72
,
214432
(
2005
).
24.
C. C.
Chao
,
P.
Duwez
, and
C. C.
Tsuei
,
J. Appl. Phys.
42
,
4282
(
1971
).
25.
A.
Hernando
and
E.
Navarro
,
Mater. Sci. Forum
343
,
787
(
2000
).
26.
Z.
Jia
,
J. W.
Harrell
, and
R. D. K.
Misra
,
Appl. Phys. Lett.
93
,
022504
(
2008
).
27.
M. A.
Turchanin
,
P. G.
Agarval
, and
I. Y.
Nikolaenko
,
J. Phase Equilib.
24
,
307
(
2003
).
28.
D. J.
Chakrabarti
and
D. E.
Laughlin
,
Bull. Alloy Phase Diagr.
2
,
460
(
1982
).
29.
L. H.
Lewis
and
Konrad M.
Bussmann
,
Rev. Sci. Instrum.
67
,
3537
(
1996
).
30.
G. A.
Nowak
and
A. A.
Colville
,
Am. Miner.
74
,
488
(
1989
).
31.
M. E.
Starumanis
and
L. S.
Yu
,
Acta Cryst. A
25
,
676
(
1966
).
32.
C. T.
Schamp
and
W. A.
Jesser
,
Ultramicroscopy
103
,
165
(
2005
).
33.
M.
Kato
,
M.
Wada
,
A.
Sato
, and
T.
Mori
,
Acta Mater.
37
,
749
(
1989
).
34.
A. G.
Khachaturyan
,
S. M.
Shapiro
, and
S.
Semenovskaya
,
Mater. Trans. JIM
33
,
278
(
1992
).
35.
K.
Adachia
,
T.
Uchiyamaa
,
M.
Matsuia
,
M.
Doib
, and
T.
Miyazakib
,
J. Magn. Magn. Mater.
54
,
115
(
1986
).
36.
S. J.
Campbell
and
T. J.
Hicks
,
J. Phys. F: Met. Phys.
5
,
27
(
1975
).
37.
H. R.
Khan
,
Ch. J.
Rauba
, and
N.
Harmsen
,
Mater. Res. Bull.
8
,
1131
(
1973
).
38.
R.
Oshima
,
F.
Hori
,
Y.
Kibata
,
M.
Komatsu
, and
M.
Kiritani
,
Mater. Sci. Eng. A
350
,
139
(
2003
).
39.
M.
Takahashi
and
R.
Oshima
,
J. de Phys. IV
C8
,
491
(
1995
).
40.
F.
Bitter
,
A. R.
Kaufmann
,
C.
Starr
, and
S. T.
Pan
,
Phys. Rev.
60
,
134
(
1941
).
41.
T. J.
Klemmer
,
N.
Shukla
,
C.
Liu
,
X. W.
Wu
,
E. B.
Svedberg
,
O.
Mryasov
,
R. W.
Chantrell
, and
D.
Weller
,
Appl. Phys. Lett.
81
,
2220
(
2002
).
42.
K.
Sato
and
Y.
Hirotsu
,
J. Appl. Phys.
93
,
6291
(
2003
).
You do not currently have access to this content.