In this work, we used CoxFe80-xB20 (x = 60, 40, 20) as spin-polarizing layers (SPLs) in order to investigate the composition of the CoFeB-SPL on the magnetoresistance in Co/Pd multilayers-based pseudo-spin-valves (PSVs) with perpendicular magnetic anisotropy (PMA). In both soft layer and hard layer, the PMA was achieved by tuning the interface anisotropy and bulk anisotropy between SPL and Co/Pd multilayers. For all the films, giant magnetoresistance (GMR) was found to decrease with increasing SPL thickness in the as-deposited case, irrespective of the CoFeB atomic composition and saturation magnetization (Ms). However, interesting behavior is observed when the films were post annealed. Although GMR degradation is expected after annealing, a peak of GMR was observed after post annealing the samples at 250 °C. This peak is stronger for the samples with thicker SPLs than those with thinner SPLs. Nonetheless, further increase in annealing temperature causes a reduction in GMR which is found to be larger in Co rich atomic composition samples with a lower Ms. In the case of thicker CoFeB SPL (15 Å), the magnetization of overall composite (Co/Pd)/CoFeB soft layer appears to be canted from out of plane direction. Among the three compositions investigated, Co60Fe20B20 polarizer shows a stronger PMA due to its lower Ms, leading to the weaker demagnetizing field. In addition, this study also indicates that the crystallographic texture of Co/Pd multilayers plays a role in GMR of PSV stack structures.

1.
R. D.
Gomez
,
T. V.
Luu
,
A. O.
Pak
,
K. J.
Kirk
, and
J. N.
Chapman
,
J. Appl. Phys.
85
,
6163
(
1999
).
2.
R.
Sbiaa
,
H.
Meng
, and
S.N.
Piramanayagam
,
Phys. Status Solidi (RRL)
5
,
413
(
2011
).
3.
A.-C.
Sun
,
P. C.
Kuo
,
J.-H.
Hsu
,
H. L.
Huang
, and
J.-M.
Sun
,
J. Appl. Phys.
98
,
076109
(
2005
).
4.
T.
Tahmasebi
,
S.N.
Piramanayagam
,
R.
Sbiaa
,
H. K.
Tan
,
R.
Law
,
S.
Lua
, and
T. C.
Chong
,
Phys. Status Solidi (RRL)
5
,
426
(
2011
).
5.
H.
Kurt
,
R.
Loloee
,
K.
Eid
,
J.
Pratt
, and
J.
Bass
,
Appl. Phys. Lett.
81
,
4787
(
2002
).
6.
S.
Yuasa
,
A.
Fukushima
,
H.
Kubota
,
Y.
Suzuki
, and
K.
Ando
,
Appl. Phys. Lett.
89
,
042505
(
2006
).
7.
A.
Kharmouche
,
S. M.
Cherif
,
A.
Bourzami
,
A.
Layadi
, and
G.
Schmerber
,
J. Phys. D.
37
,
2583
(
2004
).
8.
R.
Law
,
R.
Sbiaa
,
T.
Liew
, and
T. C.
Chong
,
Appl. Phys. Lett.
91
,
242504
(
2007
).
9.
M.
Li
,
G. C.
Wang
, and
H. G.
Min
,
J. Appl. Phys.
83
,
5313
(
1998
).
10.
A.
Sharma
,
R.
Brajpuriya
,
S.
Tripathi
,
D.
Jain
,
R.
Dubey
,
T.
Shripathi
, and
S. M.
Chaudhari
,
Mater. Sci. Eng. B
130
,
120
(
2006
).
11.
T.
Tahmasebi
,
S.N.
Piramanayagam
,
R.
Sbiaa
,
R.
Law
, and
T. C.
Chong
,
IEEE Trans. Magn.
46
,
1933
(
2010
).
12.
R.
Law
,
R.
Sbiaa
,
T.
Liew
, and
T. C.
Chong
,
IEEE Trans. Magn.
44
,
2612
(
2008
).
13.
J. H.
Chang
,
H. H.
Chen
, and
C. R.
Chang
,
Phys. Rev. B
83
,
054425
(
2011
).
14.
S. X.
Huang
,
T. Y.
Chen
, and
C. L.
Chien
,
Appl. Phys. Lett.
92
,
242509
(
2008
).
15.
T.
Tahmasebi
,
S. N.
Piramanayagam
,
R.
Sbiaa
,
R.
Law
, and
T. C.
Chong
,
J. Nanosci. Nanotechnol.
11
,
2661
(
2011
).
16.
K.
Srinivasan
,
S. N.
Piramanayagam
,
R.
Sbiaa
, and
R. W.
Chantrell
,
J. Magn. Magn. Mater.
320
,
3041
(
2008
).
17.
R.
Sbiaa
,
Z.
Bilin
,
M.
Ranjbar
,
H. K.
Tan
,
S. J.
Wong
,
S. N.
Piramanayagam
, and
T. C.
Chong
,
J. Appl. Phys.
107
,
103901
(
2010
).
18.
R.
Sbiaa
,
H.
Le Gall
,
Y.
Braik
,
J. M.
Desvignes
, and
S.
Yurchenko
,
IEEE Trans. Magn.
31
,
3274
(
1995
).
You do not currently have access to this content.