A pressure sensor of SrB4O7:Sm2+ has been synthesized and the pressure shift of its 7D0-5F0 fluorescence line has been recalibrated at room temperature up to 48 GPa and 127 GPa hydrostatically and non-hydrostatically, respectively. Different from previous study, our results show that the calibrated relation in the quasi-hydrostatic pressure environment is quite different from that in the non-hydrostatic pressure environment. The yield strength of SrB4O7:Sm2+ as a function of the pressure has been determined by the pressure gradient method in a diamond anvil cell. The results show that the yield strength of SrB4O7:Sm2+ increases from 2.85 GPa at a pressure of 7.9 GPa to 4.22 GPa at 25.4 GPa and is much smaller than that of ruby. The relatively small high-pressure yield strength of SrB4O7:Sm2+ is at the same level of the most sample materials. This would result in a small pressure difference with the coexisting sample, thus lead to a small error in the pressure measurement. The smaller yield strength and excellent fluorescent spectral characters of SrB4O7:Sm2+ make it a good substitute for ruby as a pressure scale in high-pressure experiments, especially under non-hydrostatic pressure environments.

1.
R. A.
Forman
,
G. J.
Piermarini
,
J. D.
Barnett
, and
S.
Block
,
Science
176
,
284
(
1972
).
2.
H. K.
Mao
,
J.
Xu
, and
P. M.
Bell
,
J. Geophys. Res.
91
,
4673
, doi: (
1986
).
3.
J.
Xu
,
H. K.
Mao
, and
P. M.
Bell
,
Science
232
,
1404
(
1986
).
4.
K.
Syassen
,
High Press. Res.
28
,
75
(
2008
).
5.
P. M.
Bell
and
H. K.
Mao
,
Year Book—Carnegie Inst. Washington
80
,
404
(
1981
).
6.
R. J.
Angel
,
M.
Bujak
,
J.
Zhao
,
G. D.
Gatta
, and
J. D.
Jacobsen
,
J. Appl. Cryst.
40
,
26
(
2007
).
7.
G. J.
Piermarini
,
S.
Block
, and
J. D.
Barnett
,
J. Appl. Phys.
44
,
5377
(
1973
).
8.
R. J.
Angel
,
Rev. Mineral. Geochem.
39
,
85
(
2000
).
9.
C.
Meade
and
R.
Jeanloz
,
Phys. Rev. B
42
,
2532
(
1990
).
10.
N.
Conil
and
A.
Kavner
,
J. Phys. Condens. Matter
18
,
S1039
(
2006
).
11.
J.
Wang
,
D.
He
, and
T. S.
Duffy
,
J. Appl. Phys.
108
,
063521
(
2010
).
12.
C. M.
Sung
,
C.
Goetze
, and
H. K.
Mao
,
Rev. Sci. Instrum.
48
,
1386
(
1977
).
13.
A.
Lacam
and
C.
Chateau
,
J. Appl. Phys.
66
,
366
(
1989
).
14.
J. M.
Leger
,
A.
Lacam
, and
C.
Chateau
,
J. Appl. Phys.
68
,
2351
(
1990
).
15.
F.
Datchi
,
R.
LeToullec
, and
P.
Loubeyre
,
J. Appl. Phys.
81
,
3333
(
1997
).
16.
S. V.
Raju
,
J. M.
Zaug
,
B.
Chen
,
J.
Yan
,
J. W.
Knight
,
R.
Jeanloz
, and
S. M.
Clark
,
J. Appl. Phys.
110
,
023521
(
2011
).
17.
H. K.
Mao
,
J.
Badro
,
J.
Shu
,
R. J.
Hemley
, and
A. K.
Singh
,
J. Phys. Condens. Matter
18
,
S963
(
2006
).
18.
O.
Anderson
,
D.
Isaak
, and
S.
Yamamoto
,
J. Appl. Phys.
65
,
1534
(
1989
).
19.
Q.
Jing
,
Y.
Bi
,
Q.
Wu
,
F.
Jing
,
Z.
Wang
,
J.
Xu
, and
S.
Jiang
,
Rev. Sci. Instrum.
78
,
073906
(
2007
).
20.
C.
Meade
and
R.
Jeanloz
,
J. Geophys. Res.
93
,
3261
, doi: (
1988
).
21.
S. T.
Weir
,
J.
Akella
,
C.
Ruddle
,
T.
Goodwin
, and
L.
Husing
,
Phys. Rev. B
58
,
11258
(
1998
).
You do not currently have access to this content.