Nanoporous metals are a class of novel nanomaterials with potential applications in many fields such as sensing, catalysis, and fuel cells. The present paper is aimed to investigate atomic mechanisms associated with the uniaxial tensile deformation behavior of nanoporous gold. A phase field method is adopted to generate the bicontinuous open-cell porous microstructure of the material. Molecular dynamics simulations then reveal that the uniaxial tensile deformation in such porous materials is accompanied by an accumulation of stacking faults in ligaments along the loading direction and their junctions with neighboring ligaments, as well as the formation of Lomer–Cottrell locks at such junctions. The tensile strain leads to progressive necking and rupture of some ligaments, ultimately resulting in failure of the material. The simulation results also suggest scaling laws for the effective Young's modulus, yield stress, and ultimate strength as functions of the relative mass density and average ligament size in the material.

2.
J.
Aizenberg
,
J. C.
Weaver
,
M. S.
Thanawala
,
V. C.
Sundar
,
D. E.
Morse
, and
P.
Fratzl
,
Science
309
,
275
(
2005
).
3.
P.
Fratzl
and
R.
Weinkamer
,
Prog. Mater. Sci.
52
,
1263
(
2007
).
4.
M. A.
Meyers
,
P. Y.
Chen
,
A. Y.
Lin
, and
Y.
Seki
,
Prog. Mater. Sci.
53
,
1
(
2008
).
5.
A. P.
Garcia
,
D.
Sen
, and
M. J.
Buehler
,
Metall. Mater. Trans. A
42A
,
3890
(
2011
).
6.
C. A.
Volkert
,
E. T.
Lilleodden
,
D.
Kramer
, and
J.
Weissmüller
,
Appl. Phys. Lett.
89
,
061920
(
2006
).
7.
A.
Mathur
and
J.
Erlebacher
,
Appl. Phys. Lett.
90
,
061910
(
2007
).
8.
J.
Biener
,
A. M.
Hodge
,
J. R.
Hayes
,
C. A.
Volkert
,
L. A.
Zepeda-Ruiz
,
A. V.
Hamza
, and
F. F.
Abraham
,
Nano Lett.
6
,
2379
(
2006
).
9.
Y.
Ding
,
Y. J.
Kim
, and
J.
Erlebacher
,
Adv. Mater.
16
,
1897
(
2004
).
10.
J.
Weissmüller
,
R. N.
Viswanath
,
D.
Kramer
,
P.
Zimmer
,
R.
Würschum
, and
H.
Gleiter
,
Science
300
,
312
(
2003
).
11.
L. H.
Qian
,
X. Q.
Yan
,
T.
Fujita
,
A.
Inoue
, and
M. W.
Chen
,
Appl. Phys. Lett.
90
,
153120
(
2007
).
12.
E.
Detsi
,
Z. G.
Chen
,
W. P.
Vellinga
,
P. R.
Onck
, and
J. T. M.
De Hosson
,
Appl. Phys. Lett.
99
,
083104
(
2011
).
13.
J.
Biener
,
A. M.
Hodge
,
A. V.
Hamza
,
L. M.
Hsiung
, and
J. H.
Satcher
,
J. Appl. Phys.
97
,
024301
(
2005
).
14.
D.
Kramer
,
R. N.
Viswanath
, and
J.
Weissmüller
,
Nano Lett.
4
,
793
(
2004
).
15.
K.
Bonroy
,
J. M.
Friedt
,
F.
Frederix
,
W.
Laureyn
,
S.
Langerock
,
A.
Campitelli
,
M.
Sara
,
G.
Borghs
,
B.
Goddeeris
, and
P.
Declerck
,
Anal. Chem.
76
,
4299
(
2004
).
16.
J. R.
Jones
,
P. D.
Lee
, and
L. L.
Hench
,
Philos. Trans. R. Soc. A
364
,
263
(
2006
).
17.
Y.
Ding
,
M.
Chen
, and
J.
Erlebacher
,
J. Am. Chem. Soc.
126
,
6876
(
2004
).
18.
R.
Xia
,
C. X.
Xu
,
W. W.
Wu
,
X. D.
Li
,
X. Q.
Feng
, and
Y.
Ding
,
J. Mater. Sci.
44
,
4728
(
2009
).
19.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
, 2nd. (
Cambridge University Press
,
Cambridge
,
1997
).
20.
A. M.
Hodge
,
J.
Biener
,
J. R.
Hayes
,
P. M.
Bythrow
,
C. A.
Volkert
, and
A. V.
Hamza
,
Acta Mater.
55
,
1343
(
2007
).
21.
X. Q.
Feng
,
R.
Xia
,
X. D.
Li
, and
B.
Li
,
Appl. Phys. Lett.
94
,
011916
(
2009
).
22.
R.
Xia
,
X. D.
Li
,
Q. H.
Qin
,
J. L.
Liu
, and
X. Q.
Feng
,
Nanotechnology
22
,
265714
(
2011
).
23.
R.
Xia
,
X. Q.
Feng
, and
G. F.
Wang
,
Acta Mater.
59
,
6801
(
2011
).
24.
C.
Cantrell
, Bachelor thesis, Massachusetts Institute of Technology,
2006
.
25.
A. C.
To
,
J.
Tao
,
M.
Kirca
, and
L.
Schalk
,
Appl. Phys. Lett.
98
,
051903
(
2011
).
26.
T.
Fujita
,
L. H.
Qian
,
K.
Inoke
,
J.
Erlebacher
, and
M. W.
Chen
,
Appl. Phys. Lett.
92
,
251902
(
2008
).
27.
R. C.
Newman
,
S. G.
Corcoran
,
J.
Erlebacher
,
M. J.
Aziz
, and
K.
Sieradzki
,
MRS Bull.
24
,
24
(
1999
).
28.
D. V.
Pugh
, Ph.D. dissertation, Virginia Polytechnic Institute and State University,
2003
.
29.
D. A.
Crowson
,
D.
Farkas
, and
S. G.
Corcoran
,
Scr. Mater.
56
,
919
(
2007
).
30.
D. A.
Crowson
,
D.
Farkas
, and
S. G.
Corcoran
,
Scr. Mater.
61
,
497
(
2009
).
31.
J.
Biener
,
A.
Wittstock
,
L. A.
Zepeda-Ruiz
,
M. M.
Biener
,
V.
Zielasek
,
D.
Kramer
,
R. N.
Viswanath
,
J.
Weissmüller
,
M.
Biener
, and
A. V.
Hamza
,
Nature Mater.
8
,
47
(
2009
).
32.
J. W.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
).
33.
J.
Rashed
, Master's thesis, Technion-Israel Institute of Technology,
2009
.
34.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
35.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6443
(
1984
).
36.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).
37.
G.
Grochola
,
S. P.
Russo
, and
L. K.
Snook
,
J. Chem. Phys.
123
,
204719
(
2005
).
38.
J.
Schiøtz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
39.
W. W.
Liang
and
M.
Zhou
,
Nano Lett.
5
,
2039
(
2005
).
40.
D.
Faken
and
H.
Jonsson
,
Comput. Mater. Sci.
2
,
279
(
1994
).
41.
A. J.
Cao
and
Y. G.
Wei
,
Phys. Rev. B
74
,
214108
(
2006
).
42.
A. J.
Cao
and
Y. G.
Wei
,
Phys. Rev. B
76
,
024113
(
2007
).
44.
K.
Gall
,
J. K.
Diao
, and
M. L.
Dunn
,
Nano Lett.
4
,
2431
(
2004
).
45.
R.
Dou
and
B.
Derby
,
Philos. Mag.
91
,
1070
(
2011
).
46.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
(
Butterworth-Heinemann
,
Woburn
,
2001
).
47.
J. R.
Greer
and
W. D.
Nix
,
Phys. Rev. B
73
,
245410
(
2006
).
48.
T.
Zhu
and
J.
Li
,
Prog. Mater. Sci.
55
,
710
(
2010
).
You do not currently have access to this content.