We theoretically analyze the performance of transition metal dichalcogenide (MX2) single wall nanotube (SWNT) surround gate MOSFET, in the 10 nm technology node. We consider semiconducting armchair (n, n) SWNT of MoS2, MoSe2, WS2, and WSe2 for our study. The material properties of the nanotubes are evaluated from the density functional theory, and the ballistic device characteristics are obtained by self-consistently solving the Poisson-Schrödinger equation under the non-equilibrium Green's function formalism. Simulated ON currents are in the range of 61–76 μA for 4.5 nm diameter MX2 tubes, with peak transconductance ∼175–218 μS and ON/OFF ratio ∼0.6 × 105–0.8 × 105. The subthreshold slope is ∼62.22 mV/decade and a nominal drain induced barrier lowering of ∼12–15 mV/V is observed for the devices. The tungsten dichalcogenide nanotubes offer superior device output characteristics compared to the molybdenum dichalcogenide nanotubes, with WSe2 showing the best performance. Studying SWNT diameters of 2.5–5 nm, it is found that increase in diameter provides smaller carrier effective mass and 4%–6% higher ON currents. Using mean free path calculation to project the quasi-ballistic currents, 62%–75% reduction from ballistic values in drain current in long channel lengths of 100, 200 nm is observed.

1.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nature Nanotechnol.
6
,
147
(
2011
).
2.
B.
Radisavljevic
,
M. B.
Whitwick
, and
A.
Kis
,
ACS Nano
5
,
9934
(
2011
).
3.
L.
Liu
,
S. B.
Kumar
,
Y.
Ouyang
, and
J.
Guo
,
IEEE Trans. Electron Devices
58
,
3042
(
2011
).
4.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
,
Nano Lett.
11
,
3768
(
2011
).
5.
K.
Alam
,
R. K.
Lake
, and
S.
Member
,
IEEE Trans. Electron Devices
59
,
3250
(
2012
).
6.
J.
Zang
,
S.
Ryu
,
N.
Pugno
,
Q.
Wang
,
Q.
Tu
, and
M. J.
Buehler
,
Nature Mater.
12
,
321
(
2013
).
7.
H.
Tao
,
K.
Yanagisawa
,
C.
Zhang
,
T.
Ueda
,
A.
Onda
,
N.
Li
,
T.
Shou
,
S.
Kamiya
, and
J.
Tao
,
Cryst. Eng. Comm.
14
,
3027
(
2012
).
8.
O.
Hod
,
J.
Peralta
, and
G.
Scuseria
,
Phys. Rev. B
76
,
233401
(
2007
).
9.
L.
Margulis
,
P.
Dluzewski
,
Y.
Feldman
, and
R.
Tenne
,
J. Microscopy
181
,
68
(
1996
).
10.
A.
Rothschild
,
S. R.
Cohen
, and
R.
Tenne
,
Appl. Phys. Lett.
75
,
4025
(
1999
).
11.
M.
Nath
and
C. N. R.
Rao
,
Chem. Commun.
2236
(
2001
).
12.
S. M.
Dubois
,
A.
Lopez-bezanilla
,
A.
Cresti
,
Ќ.
Franc
,
B.
Biel
,
J.
Charlier
, and
S.
Roche
,
ACS Nano
4
,
1971
(
2010
).
13.
H.
Fang
,
S.
Chuang
,
T. C.
Chang
,
K.
Takei
,
T.
Takahashi
, and
A.
Javey
,
Nano Lett.
12
,
3788
(
2012
).
14.
H.
Iwai
,
Microelectron. Eng.
86
,
1520
(
2009
).
15.
K. J.
Kuhn
,
M. Y.
Liu
, and
H.
Kennel
, in
Proceedings of International Workshop on Junction Technology (IWJT)
(
2010
), p.
1
.
16.
G.
Seifert
,
H.
Terrones
,
M.
Terrones
,
G.
Jungnickel
, and
T.
Frauenheim
,
Phys. Rev. Lett.
85
,
146
(
2000
).
17.
E. W.
Bucholz
and
S. B.
Sinnott
,
J. Appl. Phys.
112
,
123510
(
2012
).
18.
P.
Lu
,
X.
Wu
,
W.
Guo
, and
X. C.
Zeng
,
Phys. Chem. Chem. Phys.
14
,
13035
(
2012
).
19.
See http://www.quantumwise.com/ for QuantumWise Atomistix ToolKit (ATK).
20.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
21.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B.
13
,
5188
(
1976
).
22.
See http://fysik.dtu.dk/ase/ase/optimize for ASE code in BFGS optimization method.
23.
J.
Guo
,
M.
Lundstrom
, and
S.
Datta
,
Appl. Phys. Lett.
80
,
3192
(
2002
).
24.
S.
Datta
,
Quantum Transport: Atom to Transistor
, (
Cambridge University Press
,
NY
2005
).
25.
J.
Guo
,
S.
Datta
,
M.
Lundstrom
, and
M. P.
Anantram
, “
Towards Multiscale Modeling of Carbon Nanotube Transistors
,” International J. on Multiscale Computational Engineering, special issue on multiscale methods for emerging technologies, ed. N. Aluru,
2
,
257
276
(
2004
).
26.
Z.
Ren
, “
Nanoscale MOSFETS: Physics, design and simulation
,” Ph.D. dissertation (
Purdue University
,
2001
).
27.
I.
Milošević
,
B.
Nikolić
,
E.
Dobardžić
, and
M.
Damnjanović
,
Phys. Rev. B
76
,
233414
(
2007
).
28.
G. L.
Frey
,
S.
Elani
,
M.
Homyonfer
,
Y.
Feldman
, and
R.
Tenne
,
Phys. Rev. B
57
,
6666
(
1998
).
29.
G. L.
Frey
,
R.
Tenne
,
M. J.
Matthews
,
M. S.
Dresselhaus
, and
G.
Dresselhaus
,
J. Mater. Res.
13
,
2412
(
1998
).
30.
Nanotube and Nanofibers
, edited by
Y.
Gogotsi
(
CRC Press
,
Boca Raton
,
2006
) Vol.
978
, pp.
144
.
31.
M.
Cote
,
M. L.
Cohen
, and
D. J.
Chadi
,
Phys. Rev. B
58
(8),
R4277
(
1998
).
32.
Q.-C.
Sun
,
L.
Yadgarov
,
R.
Rosentsveig
,
G.
Seifert
,
R.
Tenne
, and
J. L.
Musfeldt
,
ACS Nano
7
,
3506
3511
(
2013
).
33.
L.
Yadgarov
,
R.
Rosentsveig
,
G.
Leitus
,
A.
Albu-Yaron
,
A.
Moshkovich
,
V.
Perfilyev
,
R.
Vasic
,
A. I.
Frenkel
,
A. N.
Enyashin
,
G.
Seifert
,
L.
Rapoport
, and
R.
Tenne
,
Angew. Chem., Int. Ed. Engl.
51
,
1148
(
2012
).
34.
International Technology Roadmap for Semiconductors, 2011 PIDS Report, http://www.itrs.net/Links/2011ITRS/Home2011.htm.
35.
International Technology Roadmap for Semiconductors, 2011 RFAMS Report, http://www.itrs.net/Links/2011ITRS/Home2011.htm.
You do not currently have access to this content.