Spatial variations in the chemical composition of the (Zn,Mg)O/CuIn(S,Se)2 thin-film solar cell interface were studied by photoemission electron microscopy (PEEM). Energy filtered PEEM images indicate significant differences in the magnesium and zinc distribution. Local photoemission measurements reveal a relative difference in the derived Mg/(Zn+Mg) composition of the (Zn,Mg)O material of up to (11.4 ± 0.7)%, which can be expected to induce band gap fluctuations of (60 ± 30) meV. Furthermore, local areas with significant accumulations of sodium could be observed.

1.
M. A.
Green
,
K.
Emery
,
Y.
Hishikawa
,
W.
Warta
, and
E. D.
Dunlop
,
Prog. Photovolt: Res. Appl.
20
,
606
(
2012
).
2.
P.
Jackson
,
D.
Hariskos
,
E.
Lotter
,
S.
Paetel
,
R.
Wuerz
,
R.
Menner
,
W.
Wischmann
, and
M.
Powalla
,
Prog. Photovolt: Res. Appl.
19
,
894
(
2011
).
3.
M.
Bär
,
H.-J.
Muffler
,
Ch. -H.
Fischer
,
S.
Zweigart
,
F.
Karg
, and
M. C.
Lux-Steiner
,
Prog. Photovolt: Res. Appl.
10
,
173
(
2002
).
4.
T.
Minemoto
,
Y.
Hashimoto
,
T.
Satoh
,
T.
Negami
,
H.
Takakura
, and
Y.
Hamakawa
,
J. Appl. Phys.
89
,
8327
(
2001
).
5.
F.
Erfurth
,
A.
Grimm
,
J.
Palm
,
T. P.
Niesen
,
F.
Reinert
,
L.
Weinhardt
, and
E.
Umbach
,
Appl. Phys. Lett.
98
,
142107
(
2011
).
6.
Th.
Glatzel
,
H.
Steigert
,
R.
Klenk
, and
M. Ch.
Lux-Steiner
,
Technical Digest of the 14th Photovoltaic Solar Energy Conference PVSEC
(
2004
), Vol.
2
, pp.
707
708
.
7.
F.
Erfurth
,
B.
Hußmann
,
A.
Schöll
,
F.
Reinert
,
A.
Grimm
,
I.
Lauermann
,
M.
Bär
,
Th.
Niesen
,
J.
Palm
,
S.
Visbeck
,
L.
Weinhardt
, and
E.
Umbach
,
Appl. Phys. Lett.
95
,
122104
(
2009
).
8.
R. G.
Wilks
,
I.
Repins
,
M. A.
Contreras
,
R.
Félix
,
J.
Herrero-Albillos
,
L.
Tati-Bismaths
,
F.
Kronast
,
R.
Noufi
, and
M.
Bär
,
Appl. Phys. Lett.
101
,
103908
(
2012
).
9.
J.
Palm
,
V.
Probst
,
W.
Stetter
,
R.
Toelle
,
S.
Visbeck
,
H.
Calwer
,
T.
Niesen
,
H.
Vogt
,
O.
Hernandez
,
M.
Wendl
, and
F. H.
Karg
,
Thin Solid Films
451–452
,
544
(
2004
).
10.
M.
Bär
,
W.
Bohne
,
J.
Röhrich
,
E.
Strub
,
S.
Lindner
,
M. C.
Lux-Steiner
,
Ch. -H.
Fischer
,
T. P.
Niesen
, and
F.
Karg
,
J. Appl. Phys.
96
,
3857
(
2004
).
11.
F.
Kronast
,
J.
Schlichting
,
F.
Radu
,
S. K.
Mishra
,
T.
Noll
, and
H. A.
Dürr
,
Surf. Interface Anal.
42
,
1532
(
2010
).
12.
E.
Brüche
,
Zeitschrift für Physik
86
,
448
(
1933
).
13.
14.
15.
Th.
Schmidt
,
A.
Sala
,
H.
Marchetto
,
E.
Umbach
, and
H.-J.
Freund
,
Ultramicroscopy
126
,
23
32
(
2013
).
16.
Y.
Yamaguchi
,
S.
Takakusagi
,
Y.
Sakai
,
M.
Kato
,
K.
Asakura
, and
Y.
Iwasawa
,
J. Mol. Catal. A
141
,
129
(
1999
).
17.
M.
Kiskinova
,
e-J. Surf. Sci. Nanotechnol.
2
,
1
(
2004
).
18.
G.
Xiong
,
R.
Shao
,
S. J.
Peppernick
,
A. G.
Joly
,
K. M.
Beck
,
W. P.
Hess
,
M.
Cai
,
J.
Duchene
,
J. Y.
Wang
, and
W. D.
Wie
,
JOM
62
,
90
(
2010
).
19.
S.
Pookpanratana
,
R.
France
,
R.
Félix
,
R.
Wilks
,
L.
Weinhardt
,
T.
Hofmann
,
L. T.
Bismaths
,
S.
Mulcahy
,
F.
Kronast
,
T. D.
Moustakas
,
M.
Bär
, and
C.
Heske
,
J. Phys. D: Appl. Phys.
45
,
105401
(
2012
).
20.
K.
Müller
,
I.
Burkov
, and
D.
Schmeisser
,
Thin Solid Films
431–432
,
307
(
2003
);
K.
Müller
,
I.
Burkov
, and
D.
Schmeisser
,
Thin Solid Films
480–481
,
291
(
2004
).
21.
J.
Fritsche
,
S.
Gunst
,
E.
Golusda
 et al.,
Thin Solid Films
387
,
161
(
2000
).
22.
K.
Kanai
,
T.
Miyazaki
,
T.
Wakita
 et al.,
Adv. Funct. Mater.
20
,
2046
(
2010
).
23.
C.
Pettenkofer
,
A.
Hofmann
,
W.
Bremsteller
,
C.
Lehmann
, and
F.
Kelleter
,
Ultramicroscopy
119
,
102
(
2012
).
24.
In
J. Y.
Lim
,
J. S.
Oh
,
B. D.
Ko
,
J. W.
Cho
,
S. O.
Kang
,
G.
Cho
,
H. S.
Uhm
, and
E. H.
Choi
,
J. Appl. Phys.
94
,
764
(
2003
), depending on orientation the work function of MgO single crystals is reported to be 4.22–5.07 eV;
in
K.
Ellmer
,
A.
Klein
, and
B.
Rech
,
Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells
(
Springer
,
Berlin
,
2008
), p.
143
depending on the O2/(Ar+O2) ratio during deposition the work function of polycrystalline ZnO layers is reported to be 4.1–5.1 eV.
25.
S.
Tougaard
, quases-imp-tpp2m code for the calculation of the inelastic electron mean free path, Version 2.2 (http://www.quases.com/)—based on
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
21
,
165
(
1993
).
26.
J. J.
Yeh
and
I.
Lindau
,
Atomic Data and Nuclear Data Tables
32
,
1
(
1985
).
27.
For a recent summary of the “sodium effect” please refer to
X.
Song
,
R.
Caballero
,
R.
Félix
,
D.
Gerlach
,
C. A.
Kaufmann
,
H.-W.
Schock
,
R. G.
Wilks
, and
M.
Bär
,
J. Appl. Phys.
111
,
034903
(
2012
), references therein.
28.
J.
Palm
,
V.
Probst
, and
F. H.
Karg
,
Sol. Energy
77
,
757
(
2004
).
29.
T.
Takagi
,
H.
Tanaka
,
S.
Fujita
, and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 2
42
,
L401
(
2003
).
30.
A.
Ohtomo
,
M.
Kawasaki
,
T.
Koida
,
K.
Masubuchi
,
H.
Koinuma
,
Y.
Sakurai
,
Y.
Yoshida
,
T.
Yasuda
, and
Y.
Segawa
,
Appl. Phys. Lett.
72
,
2466
(
1998
).
31.
S.
Sadofev
,
S.
Blumstengel
,
J.
Cui
,
J.
Puls
,
S.
Rogaschewski
,
P.
Schäfer
,
Yu. G.
Sadofyev
, and
F.
Henneberger
,
Appl. Phys. Lett.
87
,
091903
(
2005
).
32.

In order to estimate the impact of the Mg/(Zn+Mg) fluctuations on the (Zn,Mg)O band gap (Eg), we fitted the z = Mg/(Zn+Mg) dependent band gap values reported in Refs. 30 and 31 with a polynomial 2nd order in the given 0 ≤ z ≤ 0.45 range: Eg(z) [eV] = 3.31 +3.11 × z – 2.13 × z2. Assuming that the computed Eg(z) relation is also valid for higher Mg contents resulting in single-phase (Zn,Mg)O, the observed differences in the local XPS derived Mg/(Zn+Mg) compositions have been translated into a band gap variation.

33.
U.
Rau
and
J. H.
Werner
,
Appl. Phys. Lett.
84
,
3735
(
2004
);
J. H.
Werner
,
J.
Mattheis
, and
U.
Rau
,
Thin Solid Films
480–481
,
399
(
2005
);
S.
Siebentritt
,
Sol. Energy Mater. Sol. Cells
95
,
1471
(
2011
).
34.
L.
Weinhardt
,
Th.
Gleim
,
O.
Fuchs
,
C.
Heske
,
E.
Umbach
,
M.
Bär
,
H.-J.
Muffler
,
Ch. -H.
Fischer
,
M. Ch.
Lux-Steiner
,
Y.
Zubavichus
,
T. P.
Niesen
, and
F.
Karg
,
Appl. Phys. Lett.
82
,
571
(
2003
).
You do not currently have access to this content.