A technique for the measurement of the electron velocity versus electric field is demonstrated on as-grown and H-intercalated graphene. Van der Pauw, coplanar microbridge, and coplanar TLM structures are fabricated in order to assess the carrier mobility, carrier concentration, sheet resistance, and contact resistance of both epi-materials. These measurements are then combined with dynamic IV measurements to extract a velocity-field characteristic. The saturated electron velocity measurements indicate a value of 2.33×107cm/s for the as-grown material and 1.36×107cm/s for the H-intercalated material at 300 K. Measurements are taken as a function of temperature from 100 K to 325 K in order to estimate the optical phonon energy Eso of 4H-SiC by assuming an impurity scattering model. The extracted values of Eso are 97 meV for the as-grown sample and 115 meV for the H-intercalated sample. The H-intercalated result correlates to the anticipated value of 116 meV for 4H-SiC, while the as-grown value is significantly below the expected value. Therefore, we hypothesize that the transport properties of epitaxial graphene on SiC are influenced both by intercalation and by remote phonon scattering with the SiC substrate.

1.
R. S.
Shishir
and
D. K.
Ferry
, “
Velocity saturation in intrinsic graphene
,”
J. Phys.: Condens. Matter
21
(
34
),
344201
(
2009
).
2.
A.
Akturk
and
N.
Goldsman
, “
Electron transport and full-band electron-phonon interactions in graphene
,”
J. Appl. Phys.
103
(
5
),
053702
(
2008
).
3.
D. K.
Ferry
, “
Transport in graphene on bn and sic
,” in
2012 12th IEEE Conference on Nanotechnology (IEEE-NANO), August
(
2012
), pp.
1
5
.
4.
C.
Canali
,
G.
Majni
,
R.
Minder
, and
G.
Ottaviani
, “
Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature
,”
IEEE Trans. Electron Devices
22
,
1045
1047
(
1975
).
5.
I. A.
Khan
and
J. A.
Cooper
, Jr.
, “
Measurement of high-field electron transport in silicon carbide
,”
IEEE Trans. Electron Devices
47
(
2
),
269
273
(
2000
).
6.
V. E.
Riginos
, “
Nonsaturating velocity-field characteristic of gallium arsenide experimentally determined from domain measurements
,”
J. Appl. Phys.
45
(
7
),
2918
2922
(
1974
).
7.
J. G.
Ruch
and
G. S.
Kino
, “
Measurement of the velocity-field characteristic of gallium arsenide
,”
Appl. Phys. Lett.
10
(
2
),
40
42
(
1967
).
8.
V. E.
Dorgan
,
M.-H.
Bae
, and
E.
Pop
, “
Mobility and saturation velocity in graphene on sio[sub 2]
,”
Appl. Phys. Lett.
97
(
8
),
082112
(
2010
).
9.
K. I.
Bolotin
,
K. J.
Sikes
,
J.
Hone
,
H. L.
Stormer
, and
P.
Kim
, “
Temperature-dependent transport in suspended graphene
,”
Phys. Rev. Lett.
101
,
096802
(
2008
).
10.
L. B.
Biedermann
,
M. L.
Bolen
,
M. A.
Capano
,
D.
Zemlyanov
, and
R. G.
Reifenberger
, “
Insights into few-layer epitaxial graphene growth on 4h-SiC(0001¯) substrates from stm studies
,”
Phys. Rev. B
79
,
125411
(
2009
).
11.
A.
Meyer
,
I. G.
Ivanov
,
J. I.
Flege
,
S.
Watcharinyanon
,
J.
Falta
,
L. I.
Johansson
,
E.
Janzen
,
J.
Hassan
, and
C.
Virojanadara
, “
Surface evolution of 4h-sic(0001) during in situ surface preparation and its influence on graphene properties
,”
Mater. Sci. Forum
157
,
740
742
(
2011
).
12.
C.
Riedl
,
C.
Coletti
,
T.
Iwasaki
,
A. A.
Zakharov
, and
U.
Starke
, “
Quasi-free-standing epitaxial graphene on sic obtained by hydrogen intercalation
,”
Phys. Rev. Lett.
103
,
246804
(
2009
).
13.
M.
Winters
 et al, “
A dc comparison study between h-intercalated and native epi-graphenes on sic substrates
,”
Mater. Sci. Forum
740–742
,
129
(
2013
).
14.
C.
Coletti
,
K. V.
Emtsev
,
A. A.
Zakharov
,
T.
Ouisse
,
D.
Chaussende
, and
U.
Starke
, “
Large area quasi-free standing monolayer graphene on 3c-sic(111)
,”
Appl. Phys. Lett.
99
(
8
),
081904
(
2011
).
15.
Y.-W.
Tan
,
Y.
Zhang
,
K.
Bolotin
,
Y.
Zhao
,
S.
Adam
,
E. H.
Hwang
,
S.
Das Sarma
,
H. L.
Stormer
, and
P.
Kim
, “
Measurement of scattering rate and minimum conductivity in graphene
,”
Phys. Rev. Lett.
99
,
246803
(
2007
).
16.
G.
Roelkens
,
D.
Van Thourhout
, and
R.
Baets
, “
Ultra-thin benzocyclobutene bonding of iii-v dies onto soi substrate
,”
Electron. Lett.
41
(
9
),
561
562
(
2005
).
17.
I.
Angelov
,
H.
Zirath
, and
N.
Rosman
, “
A new empirical nonlinear model for hemt and mesfet devices
,”
IEEE Trans. Microwave Theory Tech.
40
(
12
),
2258
2266
(
1992
).
18.
T.
Fang
,
A.
Konar
,
H.
Xing
, and
D.
Jena
, “
Carrier statistics and quantum capacitance of graphene sheets and ribbons
,”
Appl. Phys. Lett.
91
(
9
),
092109
(
2007
).
19.
J. G.
Champlain
, “
A first principles theoretical examination of graphene-based field effect transistors
,”
J. Appl. Phys.
109
(
8
),
084515
(
2011
).
20.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
, “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature
438
,
197
(
2005
).
21.
J. M.
Barker
,
D. K.
Ferry
,
D. D.
Koleske
, and
R. J.
Shul
, “
Bulk gan and algan/gan heterostructure drift velocity measurements and comparison to theoretical models
,”
J. Appl. Phys.
97
(
6
),
063705
(
2005
).
22.
E. H.
Hwang
and
S.
Das Sarma
, “
Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene
,”
Phys. Rev. B
77
,
115449
(
2008
).
23.
M. V.
Fischetti
,
D. A.
Neumayer
, and
E. A.
Cartier
, “
Effective electron mobility in si inversion layers in metal–oxide–semiconductor systems with a high-kappa insulator: The role of remote phonon scattering
,”
J. Appl. Phys.
90
(
9
),
4587
4608
(
2001
).
24.
I.
Meric
,
M. Y.
Han
,
A. F.
Young
,
B.
Ozyilmaz
,
P.
Kim
, and
K. L.
Shepard
, “
Current saturation in zero-bandgap, top-gated graphene field-effect transistors
,”
Nat. Nanotechnol.
3
(
11
),
654
659
(
2008
).
25.
S. Q.
Wang
and
G. D.
Mahan
, “
Electron scattering from surface excitations
,”
Phys. Rev. B
6
,
4517
4524
(
1972
).
26.
R.
Fuchs
and
K. L.
Kliewer
, “
Optical modes of vibration in an ionic crystal slab
,”
Phys. Rev.
140
,
A2076
A2088
(
1965
).
27.
K. L.
Kliewer
and
R.
Fuchs
, “
Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region
,”
Phys. Rev.
144
,
495
503
(
1966
).
28.
H.
Nienhaus
,
T. U.
Kampen
, and
W.
Monch
, “
Phonons in 3c-, 4h-, and 6h-sic
,”
Surf. Sci.
324
(
1
),
L328
L332
(
1995
).
29.
A. A.
Lucas
and
J. P.
Vigneron
, “
Theory of electron energy loss spectroscopy from surfaces of anisotropic materials
,”
Solid State Commun.
49
(
4
),
327
330
(
1984
).
30.
A.
Konar
,
T.
Fang
, and
D.
Jena
, “
Effect of high-k gate dielectrics on charge transport in graphene-based field effect transistors
,”
Phys. Rev. B
82
,
115452
(
2010
).
You do not currently have access to this content.