Graphene deposited on planar surfaces often exhibits sharp and localized folds delimiting seemingly planar regions, as a result of compressive stresses transmitted by the substrate. Such folds alter the electronic and chemical properties of graphene, and therefore, it is important to understand their emergence, to either suppress them or control their morphology. Here, we study the emergence of out-of-plane deformations in supported and laterally strained graphene with high-fidelity simulations and a simpler theoretical model. We characterize the onset of buckling and the nonlinear behavior after the instability in terms of the adhesion and frictional material parameters of the graphene-substrate interface. We find that localized folds evolve from a distributed wrinkling linear instability due to the nonlinearity in the van der Waals graphene-substrate interactions. We identify friction as a selection mechanism for the separation between folds, as the formation of far apart folds is penalized by the work of friction. Our systematic analysis is a first step towards strain engineering of supported graphene, and is applicable to other compressed thin elastic films weakly coupled to a substrate.

1.
J. C.
Meyer
,
A. K.
Geim
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
T. J.
Booth
, and
S.
Roth
,
Nature
446
,
60
(
2007
).
2.
J. S.
Bunch
,
A. M.
van der Zande
,
S. S.
Verbridge
,
I. W.
Frank
,
D. M.
Tanenbaum
,
J. M.
Parpia
,
H. G.
Craighead
, and
P. L.
McEuen
,
Science
315
,
490
(
2007
).
3.
C.
Lee
,
X.
Wei
,
Q.
Li
,
R.
Carpick
,
J. W.
Kysar
, and
J.
Hone
,
Phys. Status Solidi B
246
,
2562
(
2009
).
4.
The nominal thickness is given by h=12D/Ys, where Ys is the in-plane surface Young's modulus with units of line tension and D is the bending stiffness of graphene.38,45
5.
T.
Li
and
Z.
Zhang
,
J. Phys. D: Appl. Phys.
43
,
075303
(
2010
).
6.
S.
Scharfenberg
,
N.
Mansukhani
,
C.
Chialvo
,
R. L.
Weaver
, and
N.
Mason
,
Appl. Phys. Lett.
100
,
021910
(
2012
).
7.
F.
Guinea
,
B.
Horovitz
, and
P.
Le Doussal
,
Phys. Rev. B
77
,
205421
(
2008
).
8.
D.
Rainis
,
F.
Taddei
,
M.
Polini
,
G.
León
,
F.
Guinea
, and
V. I.
Fal'ko
,
Phys. Rev. B
83
,
165403
(
2011
).
9.
W.
Zhu
,
T.
Low
,
V.
Perebeinos
,
A. A.
Bol
,
Y.
Zhu
,
H.
Yan
,
J.
Tersoff
, and
P.
Avouris
,
Nano Lett.
12
,
3431
(
2012
).
10.
K.
Xu
,
P.
Cao
, and
J. R.
Heath
,
Nano Lett.
9
,
4446
(
2009
).
11.
D.
Srivastava
,
D. W.
Brenner
,
J. D.
Schall
,
K. D.
Ausman
,
M.
Yu
, and
R. S.
Ruoff
,
J. Phys. Chem. B
103
,
4330
(
1999
).
12.
W.
Bao
,
F.
Miao
,
Z.
Chen
,
H.
Zhang
,
W.
Jang
,
C.
Dames
, and
C. N.
Lau
,
Nat. Nanotechnol.
4
,
562
(
2009
).
13.
V. M.
Pereira
and
A. H. C.
Neto
,
Phys. Rev. Lett.
103
,
046801
(
2009
).
14.
J.
Zang
,
S.
Ryu
,
N.
Pugno
,
Q.
Wang
,
Q.
Tu
,
M. J.
Buehler
, and
X.
Zhao
,
Nature Mater.
12
,
321
325
(
2013
).
15.
W. H.
Duan
,
K.
Gong
, and
Q.
Wang
,
Carbon
49
,
3107
(
2011
).
16.
X.
Huang
and
S.
Zhang
,
Modell. Simul. Mater. Sci. Eng.
19
,
054004
(
2011
).
17.
S.
Ghosh
and
M.
Arroyo
,
J. Mech. Phys. Solids
61
,
235
(
2013
).
18.
S. P.
Koenig
,
N. G.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
,
Nat. Nanotechnol.
6
,
543
(
2011
).
19.
T.
Yoon
,
W. C.
Shin
,
T. Y.
Kim
,
J. H.
Mun
,
T.-S.
Kim
, and
B. J.
Cho
,
Nano Lett.
12
,
1448
(
2012
).
20.
J.
Bunch
and
M.
Dunn
,
Solid State Commun.
152
,
1359
(
2012
).
21.
X.
Li
,
W.
Cai
,
J.
An
,
S.
Kim
,
J.
Nah
,
D.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
,
Science
324
,
1312
(
2009
).
22.
K.
Kim
,
Z.
Lee
,
B. D.
Malone
,
K. T.
Chan
,
B.
Alemán
,
W.
Regan
,
W.
Gannett
,
M. F.
Crommie
,
M. L.
Cohen
, and
A.
Zettl
,
Phys. Rev. B
83
,
245433
(
2011
).
23.
A. W.
Robertson
,
A.
Bachmatiuk
,
Y. A.
Wu
,
F.
Schäffel
,
B.
Büchner
,
M. H.
Rümmeli
, and
J. H.
Warner
,
ACS Nano
5
,
9984
(
2011
).
24.
A. N.
Obraztsov
,
E. A.
Obraztsova
,
A. V.
Tyurnina
, and
A. A.
Zolotukhin
,
Carbon
45
,
2017
(
2007
).
25.
N.
Liu
,
Z.
Pan
,
L.
Fu
,
C.
Zhang
,
B.
Dai
, and
Z.
Liu
,
Nano Res.
4
,
996
(
2011
).
26.
Z.
Pan
,
N.
Liu
,
L.
Fu
, and
Z.
Liu
,
J. Am. Chem. Soc.
133
,
17578
(
2011
).
27.
V. E.
Calado
,
G. F.
Schneider
,
A. M. M. G.
Theulings
,
C.
Dekker
, and
L. M. K.
Vandersypen
,
Appl. Phys. Lett.
101
,
103116
(
2012
).
28.
F.
Brau
,
H.
Vandeparre
,
A.
Sabbah
,
C.
Poulard
,
A.
Boudaoud
, and
P.
Damman
,
Nat. Phys.
7
,
56
(
2011
).
29.
Y.-P.
Cao
,
B.
Li
, and
X.-Q.
Feng
,
Soft Matter
8
,
556
(
2012
).
30.
B. D.
Leahy
,
L.
Pocivavsek
,
M.
Meron
,
K. L.
Lam
,
D.
Salas
,
P. J.
Viccaro
,
K. Y. C.
Lee
, and
B.
Lin
,
Phys. Rev. Lett.
105
,
058301
(
2010
).
31.
D. P.
Holmes
and
A. J.
Crosby
,
Phys. Rev. Lett.
105
,
038303
(
2010
).
32.
E.
Hohlfeld
and
L.
Mahadevan
,
Phys. Rev. Lett.
106
,
105702
(
2011
).
33.
D.
Chen
,
S.
Cai
,
Z.
Suo
, and
R. C.
Hayward
,
Phys. Rev. Lett.
109
,
038001
(
2012
).
34.
P.
Kim
,
M.
Abkarian
, and
H. A.
Stone
,
Nature Mater.
10
,
952
(
2011
).
35.
L.
Pocivavsek
,
R.
Dellsy
,
A.
Kern
,
S.
Johnson
,
B.
Lin
,
K. Y. C.
Lee
, and
E.
Cerda
,
Science
320
,
912
(
2008
).
36.
J.
Zang
,
X.
Zhao
,
Y.
Cao
, and
J. W.
Hutchinson
,
J. Mech. Phys. Solids
60
,
1265
(
2012
).
37.
Y.
Wang
,
R.
Yang
,
Z.
Shi
,
L.
Zhang
,
D.
Shi
,
E.
Wang
, and
G.
Zhang
,
ACS Nano
5
,
3645
(
2011
).
38.
M.
Arroyo
and
T.
Belytschko
,
Phys. Rev. B
69
,
115415
(
2004
).
39.
M.
Arroyo
and
T.
Belytschko
,
Phys. Rev. Lett.
91
,
215505
(
2003
).
40.
S.
Zhang
,
S. L.
Mielke
,
R.
Khare
,
D.
Troya
,
R. S.
Ruoff
,
G. C.
Schatz
, and
T.
Belytschko
,
Phys. Rev. B
71
,
115403
(
2005
).
41.
J.
Wu
,
K. C.
Hwang
, and
Y.
Huang
,
J. Mech. Phys. Solids
56
,
279
(
2008
).
42.
I.
Arias
and
M.
Arroyo
,
Phys. Rev. Lett.
100
,
085503
(
2008
).
43.
M.
Arroyo
and
T.
Belytschko
,
J. Mech. Phys. Solids
50
,
1941
(
2002
).
44.
M.
Arroyo
and
T.
Belytschko
,
Int. J. Numer. Methods Eng.
59
,
419
(
2004
).
45.
Q.
Lu
,
M.
Arroyo
, and
R.
Huang
,
J. Phys. D: Appl. Phys.
42
,
102002
(
2009
).
46.
C.
Lee
,
X.
Wei
,
J. W.
Kysar
, and
J.
Hone
,
Science
321
,
385
(
2008
).
47.
L. A.
Girifalco
,
M.
Hodak
, and
R. S.
Lee
,
Phys. Rev. B
62
,
13104
(
2000
).
48.
Z. H.
Aitken
and
R.
Huang
,
J. Appl. Phys.
107
,
123531
(
2010
).
49.
F.
Cirak
,
M.
Ortiz
, and
P.
Schröder
,
Int. J. Numer. Methods Eng.
47
,
2039
(
2000
).
50.
S. H.
Im
and
R.
Huang
,
J. Mech. Phys. Solids
56
,
3315
(
2008
).
51.
X.
Chen
and
J. W.
Hutchinson
,
J. Appl. Mech.
71
,
597
(
2004
).
52.
Z. Y.
Huang
,
W.
Hong
, and
Z.
Suo
,
J. Mech. Phys. Solids
53
,
2101
(
2005
).
53.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Pergamon
,
1959
).
54.
B.
Bourlon
,
D. C.
Glattli
,
C.
Miko
,
L.
Forró
, and
A.
Bachtold
,
Nano Lett.
4
,
709
(
2004
).
55.
C.
Lee
,
Q.
Li
,
W.
Kalb
,
X.-Z.
Liu
,
H.
Berger
,
R. W.
Carpick
, and
J.
Hone
,
Science
328
,
76
(
2010
).
56.
E. H.
Cook
,
M. J.
Buehler
, and
Z. S.
Spakovszky
,
J. Mech. Phys. Solids
61
,
652
(
2013
).
57.
R.
Abeyaratne
,
C.
Chu
, and
R. D.
James
,
Philos. Mag. A
73
,
457
497
(
1996
).
58.
W.
Gao
and
R.
Huang
,
J. Phys. D: Appl. Phys.
44
,
452001
(
2011
).
59.
J.
Cumings
and
A.
Zettl
,
Science
289
,
602
(
2000
).
60.
M.-F.
Yu
,
B. I.
Yakobson
, and
R. S.
Ruoff
,
J. Phys. Chem. B
104
,
8764
(
2000
).
You do not currently have access to this content.