Seashells, the armor of one of the most ancient species, have demonstrated outstanding mechanical properties such as simultaneous strengthening and toughening. The seashells have also been proven to exhibit piezoelectric and ferroelectric properties, which may contribute to their mechanical behaviors and various functionalities. This work has elaborated in more details of the piezoelectric and ferroelectric behaviors of the nacre by using the DART (Dual-AC Resonance Tracking) and vector-PFM (Piezoresponse Force Microscope), as well as the SS-PFM (Switching Spectroscopy PFM) techniques. By using the vector-PFM technique, the local polarization directions of intracrystalline biopolymers are found to be very close to the direction perpendicular to the platelet surface, and it, therefore, shows strong piezoresponse along this direction. On the other hand, the interlamellar biopolymer shows strong piezoresponse in the direction parallel to the platelet surface. This intrinsic piezoelectric property of the biopolymer may be the basis for sensing and actuating during biomineralization process. Besides the piezoresponse, the locations of various biopolymers are also revealed in-situ by using the PFM technique. The ferroelectric behaviors of nacre have been observed by SS-PFM method. Based on the shapes of the ferroelectric hysteresis loops, it is found that the biopolymers in nacre exhibit the similar behaviors to that of the polyvinylidene fluoride (PVDF) based co- or ter-polymers for energy storage applications.

1.
C. A. L.
Bassett
,
Calcif. Tissue Res.
1
(
1
),
252
272
(
1968
).
2.
V.
Sencadas
,
C.
Ribeiro
,
A.
Heredia
,
I. K.
Bdikin
,
A. L.
Kholkin
, and
S.
Lanceros-Mendez
,
Appl. Phys. A
109
,
51
(
2012
).
3.
A.
Heredia
,
V.
Meunier
,
I. K.
Bdikin
,
J.
Gracio
,
N.
Balke
,
S.
Jesse
,
A.
Tselev
,
P. K.
Agarwal
,
B. G.
Sumpter
,
S. V.
Kalinin
, and
A. L.
Kholkin
,
Adv. Funct. Mater.
22
,
2996
(
2012
).
4.
V. S.
Bystrov
,
I.
Bdikin
,
A.
Heredia
,
R. C.
Pullar
,
E.
Mishina
,
A. S.
Sigov
, and
A. L.
Kholkin
, in
Piezoelectric Nanomaterials for Biomedical Applications
, edited by
G.
Ciofani
and
A.
Menciassi
(
Springer
Berlin
Heidelberg
,
2012
), p.
187
.
5.
E.
Fukada
,
Wood Sci. Technol.
2
,
299
(
1968
).
6.
A. A.
Marino
,
R. O.
Becker
, and
S. C.
Soderhol
,
Calcif. Tissue Res.
8
,
177
(
1971
).
7.
E.
Fukada
and
H.
Ueda
,
Jpn. J. Appl. Phys., Part 1
9
,
844
(
1970
).
8.
Y.
Ando
,
E.
Fukada
, and
M. J.
Glimcher
,
Biorheology
14
,
175
(
1977
).
9.
E.
Soergel
,
J. Phys. D: Appl. Phys.
44
,
464003
(
2011
).
10.
S.
Kalinin
,
E.
Karapetian
, and
M.
Kachanov
,
Phys. Rev. B
70
,
184101
(
2004
).
11.
S. V.
Kalinin
,
A. N.
Morozovska
,
L. Q.
Chen
, and
B. J.
Rodriguez
,
Rep. Prog. Phys.
73
,
056502
(
2010
).
12.
A.
Gruverman
,
B. J.
Rodriguez
, and
S. V.
Kalinin
, in
Scanning Probe Microscopy
, edited by
S. V.
Kalinin
and
A.
Gruverman
(
Springer
,
New York
,
2007
), Vol. III, p.
615
.
14.
M.
Launspach
,
K.
Rückmann
,
M.
Gummich
,
H.
Rademaker
,
H.
Doschke
,
M.
Radmacher
, and
M.
Fritz
,
Micron
43
,
1351
(
2012
).
15.
F.
Heinemann
,
M.
Launspach
,
K.
Gries
, and
M.
Fritz
,
Biophys. Chem.
153
,
126
(
2011
).
16.
F.
Nudelman
,
H. H.
Chen
,
H. A.
Goldberg
,
S.
Weiner
, and
L.
Addadi
,
Faraday Discuss.
136
,
9
(
2007
).
17.
F.
Marin
and
G.
Luquet
,
C. R. Palevol
3
,
469
(
2004
).
18.
K. S.
Katti
,
D. R.
Katti
, and
B.
Mohanty
, in
Biomimetics, Learning from Nature
, edited by
A.
Mukherjee
(
InTech
,
India
,
2010
), p.
193
.
19.
T.
Li
and
K.
Zeng
,
Acta Mater.
59
,
3667
(
2011
).
20.
T.
Li
and
K.
Zeng
,
J. Struct. Biol.
180
,
73
(
2012
).
21.
E.
Fukada
and
S.
Sasaki
,
J. Polym. Sci.
13
,
1845
(
1975
).
23.
M. H.
Shamos
and
L. S.
Lavine
,
Nature
213
,
267
(
1967
).
24.
G. A.
Schneider
,
Annu. Rev. Mater. Res.
37
,
491
(
2007
).
25.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
,
Nanotechnology
18
,
475504
(
2007
).
26.
S.
Jesse
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
88
,
062908
(
2006
).
27.
S.
Jesse
,
H. N.
Lee
, and
S. V.
Kalinin
,
Rev. Sci. Instrum.
77
,
073702
(
2006
).
28.
A.
Percot
,
C.
Viton
, and
A.
Domard
,
Biomacromolecules
4
,
1380
(
2003
).
29.
F.
Peter
,
A.
Rudiger
,
R.
Waser
,
K.
Szot
, and
B.
Reichenberg
,
Rev. Sci. Instrum.
76
,
046101
(
2005
).
30.
V. V.
Lemanov
,
S. N.
Popov
, and
G. A.
Pankova
,
Phys. Solid State
53
,
1191
(
2011
).
31.
V. V.
Lemanov
, in
Piezoelectric Materials: Advances in Science, Technology and Applications
, edited by
C.
Galassi
,
M.
Dinescu
,
K.
Uchino
, and
M.
Sayer
(
Kluwer Academic
,
Boston
,
2000
), Vol.
76
, p.
1
.
32.
B.
Pokroy
,
A. N.
Fitch
,
P. L.
Lee
,
J. P.
Quintana
,
E. N.
Caspi
, and
E.
Zolotoyabko
,
J. Struct. Biol.
153
,
145
(
2006
).
33.
S. V.
Kalinin
,
B. J.
Rodriguez
,
S.
Jesse
,
J.
Shin
,
A. P.
Baddorf
,
P.
Gupta
,
H.
Jain
,
D. B.
Williams
, and
A.
Gruverman
,
Microsc. Microanal.
12
,
206
(
2006
).
34.
J.
Bezares
,
R. J.
Asaro
, and
M.
Hawley
,
J. Struct. Biol.
170
,
484
(
2010
).
35.
F.
Heinemann
,
L.
Treccani
, and
M.
Fritz
,
Biochem. Biophys. Res. Commun.
344
,
45
(
2006
).
36.
D. W.
Fu
,
H. L.
Cai
,
Y.
Liu
,
Q.
Ye
,
W.
Zhang
,
Y.
Zhang
,
X. Y.
Chen
,
G.
Giovannetti
,
M.
Capone
,
J.
Li
, and
R. G.
Xiong
,
Science
339
,
425
(
2013
).
37.
B. J.
Rodriguez
,
S.
Jesse
,
K.
Seal
,
N.
Balke
,
S. V.
Kalinin
, and
R.
Proksch
, in
Scanning Probe Microscopy of Functional Materials
, edited by
S. V.
Kalinin
and
A.
Gruverman
(
Springer
,
New York
,
2010
), p.
491
.
38.
Z. C.
Zhang
and
T. C. M.
Chung
,
Macromolecules
40
,
9391
(
2007
).
39.
B.
Chu
,
X.
Zhou
,
K.
Ren
,
B.
Neese
,
M.
Lin
,
Q.
Wang
,
F.
Bauer
, and
Q. M.
Zhang
,
Science
313
,
334
(
2006
).
40.
Q.
Li
,
Y.
Liu
,
J.
Schiemer
,
P.
Smith
,
Z.
Li
,
R. L.
Withers
, and
Z.
Xu
,
Appl. Phys. Lett.
98
,
092908
(
2011
).
41.
D. V.
Isakov
,
E.
d.
M.
Gomes
,
B. G.
Almeida
,
I. K.
Bdikin
,
A. M.
Martins
, and
A. L.
Kholkin
,
J. Appl. Phys.
108
,
042011
(
2010
).
42.
M.
Alexe
,
C.
Harnagea
,
D.
Hesse
, and
U.
Gosele
,
Appl. Phys. Lett.
79
,
242
(
2001
).
43.
D.
Damjanovic
,
Rep. Prog. Phys.
61
,
1267
(
1998
).
You do not currently have access to this content.