The adsorption of H2O on the GaSb (001) surface, both clean and with pre-adsorbed H atoms, has been studied computationally using dispersion-corrected density functional theory. The model employed is the α-(4×3) reconstruction consisting of Ga-Sb dimers adsorbed on the Sb-terminated surface, a disordered version of which is believed to constitute the frequently observed Sb-rich (1×3) surface. On the clean surface, molecular adsorption of H2O at a coordinatively unsaturated Ga site is exothermic (ΔE = −0.57 eV), but dissociation of this adsorbed H2O is significantly endothermic (ΔE = +0.45 eV or more). Dissociation can form either a (HO)Ga-Sb(H) site involving a Ga-Sb dimer or a (H)Ga-O(H)-Sb bridge. Other reactions are also energetically feasible, depending on the bond strength of different inequivalent Ga-Sb dimers. The two structures have essentially the same energy, and both can undergo an exothermic reaction with a second H2O. For the (HO)Ga-Sb(H) site, this reaction leads to the breaking of the dimer bond and the adsorption of molecular water, while the (H)Ga-O(H)-Sb bridge transforms to (HO)Ga-O(H)-Sb with the release of H2. On the H-terminated surface, molecular adsorption of H2O can be suppressed and dissociative adsorption enhanced, which means that formation of an OH-terminated surface may be easier when starting with an H-terminated vs. a clean surface. The implications of these results for the growth of oxide/GaSb heterostructures via atomic layer deposition are discussed.

1.
P. S.
Dutta
,
H. L.
Bhat
and
V.
Kumar
,
J. Appl. Phys.
81
,
5821
(
1997
).
2.
B. R.
Bennett
,
R.
Magno
,
J. B.
Boos
,
W.
Kruppa
, and
M. G.
Ancona
,
Solid-State Electron.
49
,
1875
(
2005
).
3.
F.
Zaera
,
J. Phys. Chem. Lett.
3
,
1301
(
2012
).
4.
L.
Lin
and
J.
Robertson
,
J. Vac. Sci. Technol. B
30
,
04E101
(
2012
).
5.
C.
Raisin
,
F. W. O.
Da Silva
, and
L.
Lassabatere
,
J. Vac. Sci. Technol. B
8
,
68
(
1990
).
6.
K.
Yong
and
J. G.
Ekerdt
,
Surf. Sci.
448
,
108
(
2000
).
7.
J.
Bonnet
,
L.
Soonckindt
,
A.
Ismail
, and
L.
Lassabatere
,
Thin Solid Films
151
,
103
(
1987
).
8.
P.
Pianetta
,
I.
Lindau
,
C. M.
Garner
, and
W. E.
Spicer
,
Phys. Rev. B
18
,
2792
(
1978
).
9.
P. W.
Chye
,
C. Y.
Su
,
I.
Lindau
,
C. M.
Garner
,
P.
Pianetta
, and
W. E.
Spicer
,
Surf. Sci.
88
,
439
(
1979
).
10.
Y.
Mizokawa
,
O.
Komoda
, and
S.
Miyase
,
Thin Solid Films
156
,
127
(
1988
).
11.
Z. Y.
Liu
,
B.
Hawkins
, and
T. F.
Keuch
,
J. Vac. Sci. Technol. B
21
,
71
(
2003
).
12.
C. A.
Wang
,
D. A.
Shiau
and
A.
Lin
,
J. Cryst. Growth
261
,
385
(
2004
).
13.
K.
Möller
,
L.
Töben
,
Z.
Kollonitsch
,
Ch.
Giesen
,
M.
Heuken
,
F.
Willig
, and
T.
Hannappel
,
Appl. Surf. Sci.
242
,
392
(
2005
).
14.
A.
Nainai
,
Y.
Sun
,
T.
Irisawa
,
Z.
Yuan
,
M.
Kobayashi
,
P.
Pianetta
,
B. R.
Bennett
,
J. B.
Boos
, and
K. C.
Saraswat
,
J. Appl. Phys.
109
,
114908
(
2011
).
15.
E.
Weiss
,
O.
Klin
,
S.
Grossman
,
S.
Greenberg
,
P. C.
Klipstein
,
R.
Akhvlediani
,
R.
Tessler
,
R.
Edrei
, and
A.
Hoffman
,
J. Vac. Sci. Technol. A
25
,
736
(
2007
).
16.
Z.
Lu
,
Y.
Jiang
,
W. I.
Wang
,
M. C.
Teich
, and
R. M.
Osgood
,Jr.
,
J. Vac. Sci. Technol. B
10
,
1856
(
1992
);
Z.
Lu
,
Y.
Jiang
,
W. I.
Wang
,
M. C.
Teich
, and
R. M.
Osgood
, Jr.
, “
Erratum
,”
J. Vac. Sci. Technol. B
10
,
2496
(
1992
).
17.
L. B.
Ruppalt
,
E. R.
Cleveland
,
J. G.
Champlain
,
S. M.
Prokes
,
J. B.
Boos
,
D.
Park
, and
B. R.
Bennett
,
Appl. Phys. Lett.
101
,
231601
(
2012
).
18.
T. D.
Veal
,
M. J.
Lowe
, and
C. F.
McConville
,
Surf. Sci.
499
,
251
(
2002
).
19.
R.
Ludeke
,
IBM J. Res. Develop.
22
,
304
(
1978
).
20.
G. E.
Franklin
,
D. H.
Rich
,
A.
Samsavar
,
E. S.
Hirschorn
,
F. M.
Leibsle
,
T.
Miller
, and
T.-C.
Chiang
,
Phys. Rev. B
41
,
12619
(
1990
).
21.
J.
Olde
,
K.-M.
Behrens
,
H.-P.
Barnscheidt
,
R.
Manzke
,
M.
Skibowski
,
J.
Henk
, and
W.
Schattke
,
Phys. Rev. B
44
,
6312
(
1991
).
22.
M. T.
Sieger
,
T.
Miller
, and
T.-C.
Chiang
,
Phys. Rev. B
52
,
8256
(
1995
).
23.
F.
Maeda
,
Y.
Watanabe
, and
M.
Oshima
,
J. Electron Spectrosc. Relat. Phenom.
80
,
225
(
1996
).
24.
W.
Barvosa-Carter
,
A. S.
Bracker
,
J. C.
Culbertson
,
B. Z.
Nosho
,
B. V.
Shanabrook
,
L. J.
Whitman
,
H.
Kim
,
N. A.
Modine
, and
E.
Kaxiras
,
Phys. Rev. Lett.
84
,
4649
(
2000
).
25.
M. C.
Righi
,
R.
Magri
, and
C. M.
Bertoni
,
Phys. Rev. B
71
,
075323
(
2005
).
26.
K.
Chuasiripattana
and
G. P.
Srivastava
,
Surf. Sci.
600
,
3803
(
2006
).
27.
J.
Houze
,
S.
Kim
,
S.-G.
Kim
,
S. C.
Erwin
, and
L. J.
Whitman
,
Phys. Rev. B
76
,
205303
(
2007
).
28.
O.
Romanyuk
,
V. M.
Kaganer
,
R.
Shayduk
,
B. P.
Tinkham
, and
W.
Braun
,
Phys. Rev. B
77
,
235322
(
2008
).
29.
O.
Romanyuk
,
F.
Grosse
, and
W.
Braun
,
Phys. Rev. B
79
,
235330
(
2009
).
30.
C.
Hogan
,
R.
Magri
, and
R.
Del Sole
,
Phys. Rev. Lett.
104
,
157402
(
2010
).
31.
P.
Giannozzi
 et al.,
J. Phys.: Condens. Matter
21
,
395502
(
2009
);
[PubMed]
See: http://www.quantum-espresso.org/ Note that versions 4.3.x contain a “bug” that, under certain conditions, affects PW91 calculations. See the vers. 5.0 release notes for details.
32.
L.
Bengtsson
,
Phys. Rev. B
59
,
12301
(
1999
).
33.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
34.
A.
Franke
and
E.
Pehlke
,
Phys. Rev. B
81
,
075409
(
2010
).
35.
See: http://www.xcrysden.org/ for further information.
36.
W.
Liu
,
W. T.
Zheng
, and
Q.
Jiang
,
Phys. Rev. B
75
,
235322
(
2007
).
37.
B. C.
Wood
,
T.
Ogitsu
, and
E.
Schwegler
,
J. Chem. Phys.
136
,
064705
(
2012
).
38.
B. C.
Wood
,
T.
Ogitsu
, and
E.
Schwegler
,
J. Photon. Energy
1
,
016002
(
2011
).
39.
S.
Jeon
,
H.
Kim
,
W. A.
Goddard
 III
, and
H. A.
Atwater
,
J. Phys. Chem. C
116
,
17604
(
2012
).
40.
A. B.
Muñoz-Garcia
and
E. A.
Carter
,
J. Am. Chem. Soc.
134
,
13600
(
2012
).
41.
T. A.
Nilsen
,
M.
Breivik
,
G.
Myrvågnes
, and
B.-O.
Fimland
,
J. Vac. Sci. Technol. B
28
,
C3I17
(
2010
).
42.
M.
Causà
,
R.
Dovesi
, and
C.
Roetti
,
Phys. Rev. B
43
,
11937
(
1991
).
43.
H. J.
McSkimin
,
A.
Jayaraman
,
P.
Andreatch
, Jr.
, and
T. B.
Bateman
,
J. Appl. Phys.
39
,
4127
(
1968
).
44.
N. N.
Sirota
and
E. M.
Gololobov
,
Dokl. Akad. Nauk SSSR
144
,
398
(
1962
);
N. N.
Sirota
and
E. M.
Gololobov
,
English transl.: Dokl. Phys. Chem.
144
,
405
(
1962
).
45.
C.-H.
Chung
,
S. I.
Yi
, and
W. H.
Weinberg
,
J. Vac. Sci. Technol. A
16
,
1785
(
1998
).
46.
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
(
Oxford Univ. Press
,
New York
,
1997
).
47.
Thermochemical Properties of Inorganic Substances
, 2nd ed., edited by
O.
Knacke
,
O.
Kubaschewski
, and
K.
Hesselmann
(
Springer
,
Berlin
,
1973
).
48.
A. Y.
Timoshkin
and
H. F.
Schaefer
 III
,
J. Am. Chem. Soc.
126
,
12141
(
2004
).
49.
P.
Popelier
,
Atoms in Molecules: An Introduction
(
Pearson Education
,
Harlow, U.K.
,
2000
).
50.
H.
Lüth
and
R.
Matz
,
Phys. Rev. Lett.
46
,
1652
(
1981
).
51.
G.
Herzberg
,
Spectra of Diatomic Molecules
(
Van Nostrand
,
Princeton, NJ
,
1950
).
You do not currently have access to this content.