In this work, we report on the single transistor latch phenomenon in junctionless transistors. In the latch condition, the device is unable to turn-off despite a reduction in gate bias. It is shown that impact ionization induced latch condition can occur due to an increase in drain bias, silicon film thickness, gate oxide thickness, and doping concentration. The latch phenomenon is explained in terms of generation–recombination rates, electrostatic potential, electric field distribution and product of current density and electric field (J·E). As latch condition is undesirable for dynamic memory applications, the work highlights the significance of (J·E) as a performance metric to avoid the junctionless transistor being driven into the latch mode.

1.
I.
Ferain
,
C. A.
Colinge
, and
J.-P.
Colinge
,
Nature
479
,
310
(
2011
).
2.
J.-P.
Colinge
,
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
,
P.
Razavi
,
B.
O'Neill
,
A.
Blake
,
M.
White
,
A.-M.
Kelleher
,
B.
McCarthy
, and
R.
Murphy
,
Nat. Nanotechnol.
5
,
225
(
2010
).
3.
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
, and
J.-P.
Colinge
,
Appl. Phys. Lett.
94
,
053511
(
2009
).
4.
C.-W.
Lee
,
I.
Ferain
,
A.
Afzalian
,
R.
Yan
,
N. D.
Akhavan
,
P.
Razavi
, and
J.-P.
Colinge
,
Solid-State Electron.
54
,
97
(
2010
).
5.
S.-J.
Choi
,
D.-I.
Moon
,
S.
Kim
,
J.-P.
Duarte
, and
Y.-K.
Choi
,
IEEE Electron Device Lett.
32
,
125
(
2011
).
6.
J. P.
Duarte
,
S.-J.
Choi
,
D.-I.
Moon
, and
Y.-K.
Choi
,
IEEE Electron Device Lett.
32
,
704
(
2011
).
7.
R.
Rios
,
A.
Cappellani
,
M.
Armstrong
,
A.
Budrevich
,
H.
Gomez
,
R.
Pai
,
N.
Rahhal-orabi
, and
K.
Kuhn
,
IEEE Electron Device Lett.
32
,
1170
(
2011
).
8.
G.
Leung
and
C. O.
Chui
,
IEEE Electron Device Lett.
33
,
767
(
2012
).
9.
A.
Gnudi
,
S.
Reggiani
,
E.
Gnani
, and
G.
Baccarani
,
IEEE Electron Device Lett.
33
,
336
(
2012
).
10.
Y.
Taur
,
H.-P.
Chen
,
W.
Wang
,
S.-H.
Lo
, and
C.
Wann
,
IEEE Trans. Electron Devices
59
,
863
(
2012
).
11.
A.
Kranti
,
C.-W.
Lee
,
I.
Ferain
,
R.
Yan
,
N. D.
Akhavan
,
P.
Razavi
,
R.
Yu
,
G. A.
Armstrong
, and
J.-P.
Colinge
,
IET Electron. Lett.
46
,
1491
(
2010
).
12.
D.
Ghosh
,
M. S.
Parihar
,
G. A.
Armstrong
, and
A.
Kranti
,
IEEE Electron Device Lett.
33
,
1477
(
2012
).
13.
C.-W.
Lee
,
A. N.
Nazarov
,
I.
Ferain
,
N. D.
Akhavan
,
R.
Yan
,
P.
Razavi
,
R.
Yu
,
R. T.
Doria
, and
J.-P.
Colinge
,
Appl. Phys. Lett.
96
,
102106
(
2010
).
14.
R.
Yu
,
S.
Das
,
I.
Ferain
,
P.
Razavi
,
N. D.
Akhavan
,
C. A.
Colinge
,
J.-P.
Colinge
, in
Proceedings of Workshop of the Thematic Network on Silicon on Insulator Technology, Devices and Circuits, EuroSOI
(
2012
), p.
37
.
15.
M. S.
Parihar
,
D.
Ghosh
,
G. A.
Armstrong
,
R.
Yu
,
P.
Razavi
, and
A.
Kranti
,
Appl. Phys. Lett.
101
,
093507
(
2012
).
16.
C.-W.
Lee
,
R.
Yan
,
I.
Ferain
,
A.
Kranti
,
N. D.
Akhavan
,
P.
Razavi
,
R.
Yu
, and
J.-P.
Colinge
, in
Proceedings of IEEE International Conference on Nanotechnology
(
2010
), p.
242
.
17.
M. S.
Parihar
,
D.
Ghosh
,
G. A.
Armstrong
, and
A.
Kranti
,
Appl. Phys. Lett.
101
,
263503
(
2012
).
18.
D.
Munteanu
and
J.-L.
Autran
,
IEEE Trans. Nucl. Sci.
59
,
773
(
2012
).
19.
R.
Yu
,
A. N.
Nazarov
,
V. S.
Lysenko
,
S.
Das
,
I.
Ferain
,
P.
Razavi
,
M.
Shayesteh
,
A.
Kranti
,
R.
Duffy
, and
J.-P.
Colinge
,
Solid-State Electron.
DOI: (published online).
20.
B.
Eitan
,
D.
Frohman-Bentchkowsky
, and
J.
Shappir
,
J. Appl. Phys.
53
,
1244
(
1982
).
21.
J. R.
Davis
,
A. E.
Glaccum
,
K.
Reeson
, and
P. L. F.
Hemment
,
IEEE Electron Device Lett.
7
,
570
(
1986
).
22.
A.
Boudou
and
B. S.
Doyle
,
IEEE Electron Device Lett.
8
,
300
(
1987
).
23.
C.-E. D.
Chen
,
M.
Matloubian
,
R.
Sundaresan
,
B.-Y.
Mao
,
C. C.
Wei
, and
G.-P.
Pollack
,
IEEE Electron Device Lett.
9
,
636
(
1988
).
24.
M.
Matloubian
,
C.-E. D.
Chen
,
B.-Y.
Mao
,
R.
Sundaresan
, and
G. P.
Pollack
,
IEEE Trans. Electron Devices
37
,
1985
(
1990
).
25.
R. J. T.
Bunyan
,
M. J.
Uren
,
N. J.
Thomas
, and
J. R.
Davis
,
IEEE Electron Device Lett.
11
,
359
(
1990
).
26.
J.-Y.
Choi
and
J. G.
Fossum
,
IEEE Trans. Electron Devices
38
,
1384
(
1991
).
27.
J.
Gautier
and
A.-J
Auberton-Herve
,
IEEE Electron Device Lett.
12
,
372
(
1991
).
28.
J. S. T.
Huang
and
J. S.
Kueng
,
IEEE Trans. Electron Devices
38
,
2082
(
1991
).
29.
J. R.
Davis
,
G. A.
Armstrong
,
N. J.
Thomas
, and
A.
Doyle
,
IEEE Trans. Electron Devices
38
,
32
(
1991
).
30.
P. S.
Liu
and
G. T.
Liu
,
J. Appl. Phys.
74
,
1410
(
1993
).
31.
G. A.
Armstrong
and
W. D.
French
,
Microelectron. Eng.
22
,
375
(
1993
).
32.
M. A.
Pavanello
,
J. A.
Martino
, and
D.
Flandre
,
Solid-State Electron.
44
,
917
(
2000
).
33.
M. J.
Kumar
and
V.
Verma
,
IEEE Trans. Reliab.
51
,
367
(
2002
).
34.
E.-H.
Toh
,
G. H.
Wang
,
L.
Chan
,
G.
Samudra
, and
Y.-C.
Yeo
,
Semicond. Sci. Technol.
23
,
015012
(
2008
).
35.
K. E.
Moselund
,
D.
Bouvet
,
V.
Pott
,
C.
Meinen
,
M.
Kayal
, and
A. M.
Ionescu
,
Solid-State Electron.
52
,
1336
(
2008
).
36.
K.
Nishiguchi
and
A.
Fujiwara
,
Appl. Phys. Express
5
,
085002
(
2012
).
37.
ATLAS Users Manual, Silvaco International, 2008.
38.
C.
Lombardi
,
S.
Manzini
,
A.
Saporito
, and
M.
Vanzi
,
IEEE Trans. Comput.-Aided Des.
7
,
1164
(
1988
).
39.
R.
van Overstraeten
and
H.
de Man
,
Solid-State Electron.
13
,
583
(
1970
).
40.
W. H.
Grant
,
Solid-State Electron.
16
,
1189
(
1973
).
41.
Y.
Taur
and
T. H.
Ning
,
Fundamentals of Modern VLSI Devices
, 2nd ed. (
Cambridge University Press
,
2009
).
You do not currently have access to this content.