In this work, the effect of Zn content in the magnetic properties of Co1−xZnxFe2O4 (0.0 ≤ x ≤ 1.0) nanoparticles synthesized by combustion reaction method was investigated by applying magnetic fields up to 20 kOe at room temperature. All the samples were found to have a cubic spinel structure and the lattice parameter increases linearly with increasing Zn-content. The hysteresis loops yield a saturation magnetization (Ms), coercive field (Hc), and remanent magnetization (Mr) that varies significantly with Zn-content. For instance, Ms, Hc, and Mr are 70 emu/g, 600 Oe, and 20 emu/g and 8 emu/g, 0.0 Oe, and 0.0 emu/g for x = 0.0 and x = 1.0, respectively. The Curie temperature determined by means of the inverse susceptibility versus temperature decreases with increasing x, being ∼787 K and ∼634 K for x = 0.0 and 1.0, respectively. The magnetic cubic anisotropy constant for different Zn-contents, determined by a “law of approach” to saturation, was found to be smaller than those values for pure cobalt ferrites nanoparticles and strongly dependent on x, being 3.87 × 106 erg/cm3 and 0.22 × 106 erg/cm3 for x = 0.0 and 1.0, respectively, at room temperature. A discussion on the implications of the Zn-content in the determination of the anisotropy constant in these materials will also be presented.

1.
M.
Rajendran
 et al,
J. Magn. Magn. Mater.
232
,
71
(
2001
).
2.
C.
Liu
 et al,
J. Am. Chem. Soc.
122
,
6263
(
2000
).
3.
D. S.
Mathew
and
R.-S.
Juang
,
J. Chem. Eng.
129
,
51
(
2007
).
4.
G. V.
Duong
 et al,
J. Magn. Magn. Mater.
311
,
46
(
2007
).
5.
S.
Singhal
 et al,
J. Electromagn. Anal. Appl.
2
,
376
(
2010
).
6.
A.
Franco
, Jr.
 et al,
J. Magn. Magn. Mater.
308
,
198
(
2007
).
7.
A.
Franco
, Jr.
and
V.
Zapf
,
J. Magn. Magn. Mater.
320
,
709
(
2008
).
8.
A.
Franco
, Jr.
and
F. C.
Silva
,
Appl. Phys. Lett.
96
,
172505
(
2010
).
9.
S. W.
da Silva
 et al,
J. Appl. Phys.
107
,
09B503
(
2010
).
10.
A.
Franco
, Jr.
and
M. S.
Silva
,
J. Appl. Phys.
109
,
07B505
(
2011
).
11.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
, 2nd ed. (
Addison-Wesley
,
Reading
,
2009
), pp.
178
179
.
12.
P.
Sherrer
,
Nachr. Cöttinger Gesell.
2
,
98
(
1918
).
13.
A. R.
Denton
and
N. W.
Aschcroft
,
Phys. Rev. A
43
,
3161
(
1991
).
14.
A.
Franco
, Jr.
 et al,
J Appl. Phys.
109
,
07A745
(
2011
).
15.
N.
Ranvah
 et al,
IEEE Trans. Magn.
45
,
2861
(
2009
).
16.
Y.
Melikhov
 et al,
J. Appl. Phys.
99
,
08R102
(
2006
).
17.
Y.
Melikhov
 et al,
IEEE Trans. Magn.
42
,
2861
(
2006
).
18.
B. D.
Cullity
and
C. D.
Graham
,
Introduction to Magnetic Materials
, 2nd ed. (
Addison-Wesley
,
Reading
,
2009
), pp.
180
182
.
19.
L.
Neel
,
Ann. Phys.
3
,
137
(
1943
).
20.
Y.
Yafet
and
C.
Kittel
,
Phys. Rev.
87
,
290
(
1952
).
21.
F.
Nakagomi
 et al,
J. Appl. Phys.
101
,
09M514
(
2007
).
22.
A.
Franco
, Jr.
 et al,
J. Appl. Phys.
101
,
09M506
(
2007
).
23.
J.
Park
 et al,
Nature
3
,
891
(
2004
).
24.
R. A.
McCurrie
,
Ferromagnetic Materials—Structure and Properties
(
Academic Press
,
London
,
1994
), pp.
101
104
.
You do not currently have access to this content.