We have modeled the reflow process of FeCo magnetic nanoparticle (MNP)-based solder composites with eddy current power loss of substrate and magnetic power losses of solder bumps. For an area array package without MNPs when subjected to 300 kHz ac magnetic field, the eddy current power loss can result in excessive temperatures that can cause substrate damage. Temperature profiles with different MNP concentration were simulated and the results showed localized reflow of solders to enable low-temperature assembly. The temperatures at different times and positions in solder composites were analyzed. We also modeled thermal profiles for solder composites with 0.2 wt. % MNP in 1 MHz and 3 MHz magnetic field. Such high field frequency generated larger power losses in MNPs and is shown to increase the heating efficiency.

1.
A. H.
Habib
,
S.
Xu
,
E.
Walker
,
M.
Ondeck
,
R.
Swaminathan
, and
M. E.
McHenry
,
J. Appl. Phys.
111
,
07B305
(
2012
).
2.
D.
Shangguan
,
Lead-Free Solder Interconnect Reliability
(
ASM International
,
2005
).
3.
A. H.
Habib
,
M. G.
Ondeck
,
K. J.
Miller
,
R.
Swaminathan
, and
M. E.
McHenry
,
IEEE Trans. Magn.
46
(
6
),
2187
2190
(
2010
).
4.
D. R.
Frear
,
J. Mater. Sci.
18
,
319
(
2007
).
5.
M.
Li
,
H.
Xu
,
S.-W. R.
Lee
,
J.
Kim
, and
D.
Kim
,
IEEE Trans. Adv. Packag.
31
(
2
),
399
403
(
2008
).
6.
A. H.
Habib
,
C. L.
Ondeck
,
P.
Chaudhary
,
M. R.
Bockstaller
, and
M. E.
McHenry
,
J. Appl. Phys.
103
,
07A307
(
2008
).
7.
K. N.
Collier
,
N. J.
Jones
,
K. J.
Miller
,
Y. L.
Qin
,
D. E.
Laughlin
, and
M. E.
McHenry
,
J. Appl. Phys.
105
,
07A328
(
2009
).
8.
K. J.
Miller
,
A.
Colleti
,
P. J.
Papi
, and
M. E.
McHenry
,
J. Appl. Phys.
107
,
09A313
(
2010
).
9.
K. J.
Miller
,
K. N.
Collier
,
H. B.
Soll-Morris
,
R.
Swaminathan
, and
M. E.
McHenry
,
J. Appl. Phys.
105
,
07E714
(
2009
).
10.
C. A.
Sawyer
,
A. H.
Habib
,
K.
Miller
,
K. N.
Collier
,
C. L.
Ondeck
, and
M. E.
McHenry
,
J. Appl. Phys.
105
,
07B320
(
2009
).
11.
C. L.
Ondeck
,
A. H.
Habib
,
P.
Ohodnicki
,
K.
Miller
,
C. A.
Sawyer
,
P.
Chaudhary
, and
M. E.
McHenry
,
J. Appl. Phys.
105
,
07B324
(
2009
).
12.
Z.
Turgut
,
N. T.
Nuhfer
,
H. R.
Piehler
, and
M. E.
McHenry
,
J. Appl. Phys.
85
,
4406
4408
(
1999
).
13.
M. E.
McHenry
,
M. A.
Willard
, and
D. E.
Laughlin
,
Prog. Mater. Sci.
44
(
4
),
291
433
(
1999
).
14.
R. C.
O'Handley
,
Modern Magnetic Materials: Principles and Applications
(
John-Wiley and Sons
,
New York
,
2000
).
15.
N. J.
Siakavellas
,
IEEE Trans. Magn.
33
(
3
),
2245
2257
(
1997
).
16.
M. E.
McHenry
,
S. A.
Majetich
,
M. J.
De Graef
,
J. O.
Artman
, and
S.
Staley
,
Phys. Rev. B
49
,
11358
11363
(
1994
).
17.
R. E.
Rosensweig
,
J. Magn. Magn. Mater.
252
,
370
374
(
2002
).
18.
F.
Kreith
,
R. M.
Manglik
, and
M. S.
Bohn
,
Principles of Heat Transfer
(
CL Engineering
,
2010
).
19.
A. D.
Podoltsev
,
I. N.
Kucheryavaya
, and
B. B.
Lebedev
,
IEEE Trans. Magn.
39
(
1
),
539
548
(
2003
).
20.
K. L.
McNerny
,
Y.
Kim
,
D. E.
Laughlin
, and
M. E.
McHenry
,
J. Appl. Phys.
107
,
09A312
14
(
2010
).
21.
H.
Ucar
,
J. J.
Ipus
,
D. E.
Laughlin
, and
M. E.
McHenry
, “
Tuning the curie temperature of γ-FeNi nanoparticles for magnetocaloric applications by controlling the oxidation kinetics
,”
J. Appl. Phys.
(to be published).
You do not currently have access to this content.