Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable α- and metastable β-phases and that volume proportions evolve with deposited sublayers' thicknesses. α-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, α-W⟨110⟩ and unexpectedly α-W⟨111⟩ texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable β-W phase. Moreover, the texture development of α-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the α-W phase structure over 3 nm stratification step. Below, the β-W phase structure becomes predominant.

1.
E.
Lassner
and
W.-D.
Schubert
,
Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds
(
Springer
,
1999
).
2.
H.
Zheng
,
J. Z.
Ou
,
M. S.
Strano
,
R. B.
Kaner
,
A.
Mitchell
, and
K.
Kalantar-zadeh
,
Adv. Func. Mater.
21
,
2175
(
2011
).
3.
D.
Dellasega
,
G.
Merlo
,
C.
Conti
,
C. E.
Bottani
, and
M.
Passoni
,
J. Appl. Phys.
112
,
084328
(
2012
).
4.
I. A.
Weerasekera
,
S. I.
Shah
,
D. V.
Baxter
, and
K. M.
Unruh
,
Appl. Phys. Lett.
64
,
3231
(
1994
).
5.
Y. G.
Shen
and
Y. W.
Mai
,
J. Mater. Sci.
36
,
93
(
2001
).
6.
M. J.
O'Keefe
and
J. T.
Grant
,
J. Appl. Phys.
79
(
12
),
9134
(
1996
).
7.
Y. G.
Shen
,
Y. W.
Mai
,
Q. C.
Zhang
,
D. R.
McKenzie
,
W. D.
McFall
, and
W. E.
McBride
,
J. Appl. Phys.
87
,
177
(
2000
).
8.
E.
Le Bourhis
,
P.
Goudeau
,
J.-P.
Eymery
, and
W.
Al-Khoury
,
Eur. Phys. J.: Appl. Phys.
30
,
33
(
2005
).
9.
S. I.
Shah
,
B. A.
Doele
,
C. R.
Fincher
,
K. M.
Unrush
, and
I.
Weerasekera
,
J. Vac. Sci. Technol. A
11
,
1470
(
1993
).
10.
M. S.
Aouadi
,
R. R.
Parsons
,
P. C.
Wong
, and
K. A. R.
Mitchell
,
J. Vac. Sci. Technol. A
10
,
273
(
1992
).
11.
M.
Gasgnier
,
L.
Nevot
,
P.
Ballif
, and
J.
Bardolle
,
Phys. Status Solidi A
79
,
531
(
1983
).
12.
G.
Hägg
and
N.
Schönberg
,
Acta Crystallogr.
7
,
351
(
1954
).
13.
T.
Karabacak
,
P.-I.
Wang
,
G.-C.
Wang
, and
T.-M.
Lu
,
Thin Solid Films
493
(
1–2
),
293
(
2005
).
14.
G. M.
Demyashev
,
A. L.
Taube
, and
E.
Siores
,
Nano Lett.
1
(
4
),
183
(
2001
).
15.
N. C.
Angastiniotis
and
B. H.
Kear
,
Mater. Sci. Forum
179–181
,
357
(
1995
).
16.
N. C.
Angastiniotis
,
B. H.
Kear
,
L. E.
McCandlish
,
K. V.
Ramanujachary
, and
M.
Greenblatt
,
Adv. Powder Metall.
7
,
29
(
1992
).
17.
A.
Bosseboeuf
,
M.
Dupeus
,
M.
Boutry
,
T.
Bourouina
,
D.
Bouchier
, and
D.
Debarre
,
Microsc. Microanal. Microstruct.
8
,
261
(
1997
).
18.
H. S.
Witham
,
P.
Chindandom
,
I.
An
,
R. W.
Collins
,
R.
Messier
, and
K.
Vedam
,
J. Vac. Sci. Technol. A
11
,
1881
(
1993
).
19.
M.
Arita
and
I.
Nishida
,
Jpn. J. Appl. Phys., Part 1
32
,
1759
(
1993
).
20.
T.
Kizuka
,
T.
Sakamoto
, and
N.
Tanaka
,
J. Cryst. Growth
131
,
439
(
1993
).
21.
D. P.
Basile
,
C. L.
Bauer
,
S.
Mahajan
,
A. G.
Milnes
,
T. N.
Jackson
, and
J.
DeGelormo
,
Mater. Sci. Eng., B
10
,
171
(
1991
).
22.
A. M.
Haghiri-Gosnet
,
F. R.
Ladan
,
C.
Mayeux
, and
H.
Launois
,
Appl. Surf. Sci.
38
,
295
(
1989
).
23.
E. K.
Broadbent
,
J. Vac. Sci. Technol. B
5
,
1661
(
1987
).
24.
Y.
Pauleau
,
P.
Lami
,
A.
Tissier
,
R.
Pantel
, and
J. C.
Oberlin
,
Thin Solid Films
143
,
259
(
1986
).
25.
A. J.
Learn
and
D. W.
Foster
,
J. Appl. Phys.
58
,
2001
(
1985
).
26.
J. H.
Souk
,
J. F.
O'Hanlon
, and
J.
Angillelo
,
J. Vac. Sci. Technol. A
3
,
2289
(
1985
).
27.
A.
Bensaoula
,
J. C.
Wolfe
,
A.
Ignatiev
,
F. O.
Fond
, and
T. S.
Leung
,
J. Vac. Sci. Technol. A
2
,
389
(
1984
).
28.
W. D.
Nix
,
Metall. Mater. Trans. A
20
,
2217
(
1989
).
29.
R. P.
Vinci
and
J. J.
Vlassak
,
Annu. Rev. Mater. Sci.
26
,
431
(
1996
).
30.
J.
Schiøtz
,
T.
Vegge
,
F. D.
Di Tolla
, and
K. W.
Jacobsen
,
Phys. Rev. B
60
,
11971
(
1999
).
32.
H.
Van Swygenhoven
and
J. R.
Weertman
,
Mater. Today
9
,
24
(
2006
).
33.
S.
Cuenot
,
C.
Frétigny
,
S.
Demoustier-Champagne
, and
B.
Nysten
,
Phys. Rev. B
69
,
165410
(
2004
).
34.
F.
Spaepen
and
D. Y. W.
Yu
,
Scr. Mater.
50
,
729
(
2004
).
36.
M. A.
Meyers
,
A.
Mishra
, and
D. J.
Benson
,
Prog. Mater. Sci.
51
,
427
(
2006
).
37.
I. C.
Noyan
and
J. B.
Cohen
,
Residual Stress Measurement by Diffraction and Interpretation
(
Springer
,
New York
,
1987
).
38.
V.
Hauk
,
Structural and Residual Stress Analysis by Non Destructive Methods: Evaluation, Application, Assessment
(
Elsevier
,
Amsterdam
,
1997
).
39.
P.
Villain
,
P.
Goudeau
,
J.
Ligot
,
S.
Benayoun
,
K. F.
Badawi
, and
J.-J.
Hantzpergue
,
J. Vac. Sci. Technol.
21
(
4
),
967
(
2003
).
40.
N.
Durand
,
K. F.
Badawi
, and
P.
Goudeau
,
J. Appl. Phys.
80
,
5021
(
1996
).
41.
A. H.
Al-Bayati
,
K.
Ormannn-Rossiter
,
J. A.
van den Berg
, and
D. G.
Armour
,
Surf. Sci.
241
,
91
(
1991
).
42.
P. K.
Srivastava
,
V. D.
Vankar
, and
K. L.
Chopra
,
Thin Solid Films
161
,
107
(
1988
).
43.
C. V.
Thompson
,
Annu. Rev. Mater. Sci.
30
,
159
(
2000
).
44.
V.
Consonni
,
G.
Rey
,
H.
Roussel
, and
D.
Bellet
,
J. Appl. Phys.
111
,
033523
(
2012
).
45.
S. G.
Wang
,
E. K.
Tian
, and
C. W.
Lung
,
J. Phys. Chem. Solids
61
,
1295
(
2000
).
46.
Y.
Gotoh
,
S.
Entani
, and
H.
Kawanowa
,
Surf. Sci.
507–510
,
401
(
2002
).
47.
J. M.
Zhang
,
D. D.
Wang
, and
K. W.
Xu
,
Appl. Surf. Sci.
252
,
8217
(
2006
).
48.
T.
Ganne
,
J.
Crépin
,
S.
Serror
, and
A.
Zaoui
,
Acta Mater.
50
,
4149
(
2002
).
49.
50.
B.
Girault
,
D.
Eyidi
,
T.
Chauveau
,
D.
Babonneau
,
P.-O.
Renault
,
E.
Le Bourhis
, and
P.
Goudeau
,
J. Appl. Phys.
109
,
014305
(
2011
).
51.
52.
L. H.
He
,
C. W.
Lim
, and
B. S.
Wu
,
Int. J. Solids Struct.
41
,
847
(
2004
).
54.
G.
Guisbiers
and
L.
Buchaillot
,
Nanotechnology
19
,
435701
(
2008
).
55.
R.
Hoogeveen
,
M.
Moske
,
H.
Geisler
, and
K.
Samwer
,
Thin Solid Films
275
,
203
(
1996
).
56.
C. E.
Murray
,
K. P.
Rodbell
, and
P. M.
Vereecken
,
Thin Solid Films
503
,
207
(
2006
).
57.
N. R.
Shamsutdinov
,
A. J.
Böttger
, and
F. D.
Tichelaar
,
Scr. Mater.
54
,
1727
(
2006
).
58.
M. G.
Charlton
,
Nature
174
,
703
(
1954
).
59.
W. D.
Schubert
,
Int. J. Refract. Met. Hard. Mater.
8
,
178
(
1990
).
60.
S.
Geller
,
Acta Crystallogr.
10
,
380
(
1957
).
61.
A. B.
Kiss
,
J. Therm. Anal.
54
,
815
(
1998
).
62.
C. L.
Chen
,
T.
Nagase
, and
H.
Mori
,
J. Mater. Sci.
44
,
1965
(
2009
).
63.
L.
Maillé
,
C.
Sant
,
C.
Le Paven-Thivet
,
C.
Legrand-Buscema
, and
P.
Garnier
,
Thin Solid Films
428
,
237
(
2003
).
64.
G.
Rommel
, Gaz à très basse pression Formules et tables, Editions Techniques de l'Ingénieur,
1985
.
65.
G. K.
Hubler
and
J. A.
Sprague
,
Surf. Coat. Technol.
81
,
29
35
(
1996
).
66.
W.
Hiller
,
M.
Buchgeister
,
P.
Eitner
,
K.
Kopitzki
,
V.
Lillienthal
, and
E.
Peiner
,
Mater. Sci. Eng., A
115
,
151
(
1989
).
67.
J. A.
Thornton
and
J. E.
Greene
, in
Handbook of Deposition Technologies for Films and Coatings
, 2nd ed., edited by
R. F.
Bunshah
(
Noyes, Park Ridge
,
NJ
,
1994
).
68.
V. D.
Osovskii
,
Y. G.
Ptushinskii
,
V. G.
Sukretnyi
,
B. A.
Chuikov
,
V. K.
Medvedev
, and
Y.
Suchorski
,
Surf. Sci.
377–379
,
664
(
1997
).
69.
H.
Huang
and
F.
Spaepen
,
Acta Mater.
48
,
3261
(
2000
).
You do not currently have access to this content.