In this work, we consider the possibility of building magnetic analog logic devices utilizing spin wave interference for special task data processing. As an example, we consider a multi-terminal magnonic matrix switch comprising multiferroic elements and a two-dimensional grid of magnetic waveguides connected via four-terminal cross-junctions. The multiferroic elements are placed on the periphery of the switch and used as input/output ports for signal conversion among the electric and magnetic domains. Data processing is accomplished via the use of spin wave interference within the magnonic matrix. We present the results of numerical modeling illustrating device operation for pattern matching, finding the period of the data string, and image processing. We also present the results of numerical modeling showing the device capabilities as a magnetic holographic memory. Magnonic holographic devices are of great potential to complement the conventional general-type processors in special task data processing and may provide a new direction for functional throughput enhancement. According to estimates, magnonic holographic devices can provide up to 1 Tb/cm2 data storage density and data processing rate exceeding 1018 bits/s/cm2. The physical limitations and practical challenges of the proposed approach are discussed.

1.
G.
Boole
,
An Investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities
(
Macmillan
,
Cambridge
,
1854
, reissued by Cambridge University Press, 2009).
2.
C.
Shannon
, MS Thesis,
Massachusetts Institute of Technology
,
1937
.
3.
G. E.
Moore
,
Electronics
38
(
8
),
114
117
(
1965
).
4.
K.
Bernstein
,
R. K.
Cavin
,
W.
Porod
,
A.
Seabaugh
, and
J.
Welser
,
Proc. IEEE
98
(
12
),
2169
2184
(
2010
).
5.
G.
Bourianoff
,
J. E.
Brewer
,
R.
Cavin
,
J. A.
Hutchby
, and
V.
Zhirnov
,
Computer
41
(
5
),
38
46
(
2008
).
6.
A.
Khitun
,
M.
Bao
, and
K. L.
Wang
,
IEEE Trans. Magn.
44
(
9
),
2141
2152
(
2008
).
7.
A.
Khitun
and
K. L.
Wang
,
J. Appl. Phys.
110
(
3
),
034306
034310
(
2011
).
8.
A.
Khitun
and
K.
Wang
,
Superlattices Microstruct.
38
,
184
200
(
2005
).
9.
A.
Khitun
,
J. Appl. Phys.
111
(
5
),
054307
(
2012
).
10.
A.
Kozhanov
,
Annual Report 2.2 to the Western Institute of Nanoelectronics
(
2011
).
11.
T.
Wu
,
A.
Bur
,
P.
Zhao
,
K. P.
Mohanchandra
,
K.
Wong
,
K. L.
Wang
,
C. S.
Lynch
, and
G. P.
Carman
,
Appl. Phys. Lett.
98
(
1
),
012504
012507
(
2011
).
12.
S.
Cherepov
,
P.
Khalili
,
J. G.
Alzate
,
K.
Wong
,
M.
Lewis
,
P.
Upadhyaya
,
J.
Nath
,
M.
Bao
,
A.
Bur
,
T.
Wu
,
G. P.
Carman
,
A.
Khitun
, and
K. L.
Wang
,
Annual Report 2.4 to the Western Institute of Nanoelectronics
(
2011
).
13.
A. G.
Kaur
and
G.
Narang
,
J. Opt. Soc. Am. B
24
,
221
225
(
2007
).
14.
D.
Hillerkuss
,
M.
Winter
,
M.
Teschke
,
A.
Marculescu
,
J.
Li
,
G.
Sigurdsson
,
K.
Worms
,
S.
Ben Ezra
,
N.
Narkiss
,
W.
Freude
, and
J.
Leuthold
,
Opt. Express
18
(
9
),
9324
9340
(
2010
).
15.
16.
P.
Hariharan
, in
Optical Holography: Principles, Techniques and Applications
(
Cambridge University Press
,
1996
).
17.
S. H.
Lee
,
Optical Information Processing Fundamentals
(
Springer
,
Berlin, Germany
,
1981
).
18.
P.
Ambs
,
Adv. Opt. Technol.
2010
,
15
.
19.
M. P.
Kostylev
,
A. A.
Serga
,
T.
Schneider
,
B.
Leven
, and
B.
Hillebrands
,
Appl. Phys. Lett.
87
(
15
),
153501
153503
(
2005
).
20.
Y.
Wu
,
M.
Bao
,
A.
Khitun
,
J.-Y.
Kim
,
A.
Hong
, and
K. L.
Wang
,
J. Nanoelectron. Optoelectron.
4
(
3
),
394
397
(
2009
).
21.
P.
Shabadi
,
A.
Khitun
,
P.
Narayanan
,
M.
Bao
,
I.
Koren
,
K. L.
Wang
, and
C. A.
Moritz
, in
Proceedings of the Nanoscale Architectures (NANOARCH), 2010 IEEE/ACM International Symposium
(
2010
), pp.
11
16
.
22.
P.
Shabadi
,
A.
Khitun
,
K.
Wong
,
P. K.
Amiri
,
K. L.
Wang
, and
C. A.
Andras
, in
Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH-11)
(
2011
), pp.
107
113
.
23.
S.
Cherepov
,
P.
Khalili
,
J. G.
Alzate
,
K.
Wong
,
M.
Lewis
,
P.
Upadhyaya
,
J.
Nath
,
M.
Bao
,
A.
Bur
,
T.
Wu
,
G. P.
Carman
,
A.
Khitun
, and
K. L.
Wang
, in
Proceedings of the 56th Conference on Magnetism and Magnetic Materials (MMM 2011)
, DB-03, Scottsdale, Arizona,
2011
.
24.
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
,
Phys. Rev. Lett.
89
(
23
),
237201
237204
(
2002
).
25.
P.
Shabadi
,
A.
Khitun
,
P.
Narayanan
,
B.
Mingqiang
,
I.
Koren
,
K. L.
Wang
, and
C. A.
Moritz
, in
2010 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH 2010)
, Anaheim, CA,
2010
.
26.
P.
Kabos
and
V. S.
Stalmachov
,
Magnetostatic Waves and Their Applications
(
Chapman & Hall
,
London
,
1994
).
27.
G.
Finocchio
,
G.
Siracusano
,
V.
Tiberkevich
,
I. N.
Krivorotov
,
L.
Torres
, and
B.
Azzerboni
,
Phys. Rev. B
81
(
18
),
184411
(
2010
).
28.
A.
Khitun
,
B.
Mingqiang
, and
K. L.
Wang
, in
12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010)
, Berkeley, CA,
2010
.
29.
F.
Alibart
,
T.
Sherwood
, and
D. B.
Strukov
, in
Proceedings of the 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS) (2011)
, pp.
279
286
.
You do not currently have access to this content.