Performance of substrate-configured hydrogenated amorphous silicon solar cells based on ZnO nanorod arrays prepared by hydrothermal method has been investigated. The light harvest ability of three-dimensional nanorods solar cells is a compromise between the absorber layer thickness and the nanorods geometry. By optimizing the intrinsic a-Si:H absorber layer thickness from 75 to 250 nm and varying the length of the nanorods from 600 to 1800 nm, the highest energy conversion efficiency of 6.07% is obtained for the nanorods solar cell having thin absorber layer thickness of 200 nm with the rod length of 600 nm. This represents up to 28% enhanced efficiency compared to the conventional flat reference cell with similar absorber layer thickness.

1.
B. M.
Kayes
,
H. A.
Atwater
, and
N. S.
Lewis
,
J. Appl. Phys.
97
,
114302
(
2005
).
2.
M. D.
Kelzenberg
,
S. W.
Boettcher
,
J. A.
Petykiewicz
,
D. B.
Turner-Evans
,
M. C.
Putnam
,
E. L.
Warren
,
J. M.
Spurgeon
,
R. M.
Briggs
,
N. S.
Lewis
, and
H. A.
Atwater
,
Nature Mater.
9
,
239
(
2010
).
3.
A.
Deinega
and
S.
John
,
J. Appl. Phys.
112
,
074327
(
2012
).
4.
M. G.
Deceglie
,
V. E.
Ferry
,
A. P.
Alivisatos
, and
H. A.
Atwater
,
Nano Lett.
12
,
2894
2900
(
2012
).
5.
M. J.
Naughton
,
K.
Kempa
,
Z. F.
Ren
,
Y.
Gao
,
J.
Rybczynski
,
N.
Argenti
,
W.
Gao
,
Y.
Wang
,
Y.
Peng
,
J. R.
Naughton
,
G.
McMahon
,
T.
Paudel
,
Y. C.
Lan
,
M. J.
Burns
,
A.
Shepard
,
M.
Clary
,
C.
Ballif
,
F. J.
Haug
,
T.
Söderström
,
O.
Cubero
, and
C.
Eminian
,
Phys. Status Solidi (RRL)
4
,
181
(
2010
).
6.
Y.
Kuang
,
K. H. M.
van der Werf
,
Z. S.
Houweling
, and
R. E. I.
Schropp
,
Appl. Phys. Lett.
98
,
113111
(
2011
).
7.
H. H.
Li
,
P. Y.
Yang
,
S. M.
Chiou
,
H. W.
Liu
, and
H. C.
Cheng
,
IEEE Electron Device Letters
32
(
7
),
928
930
(
2011
).
8.
J.
Zhu
,
C. M.
Hsu
,
Z.
Yu
,
S.
Fan
, and
Y.
Cui
,
Nano Lett.
10
,
1979
(
2010
).
9.
C.-M.
Hsu
,
C.
Battaglia
,
C.
Pahud
,
Z.
Ruan
,
F.-J.
Haug
,
S.
Fan
,
C.
Ballif
, and
Y.
Cui
,
Adv. Energy Mater.
2
,
628
(
2012
).
10.
J.
Kim
,
A. J.
Hong
,
J.-W.
Nah
,
B.
Shin
,
F. M.
Ross
, and
D. K.
Sadana
,
ACS Nano
6
,
265
(
2012
).
11.
Y.
Kuang
,
K. H. M.
van der Werf
,
Z. S.
Houweling
,
M.
Di Vece
, and
R. E. I.
Schropp
,
J. Non-Cryst. Solids
358
,
2209
2213
(
2012
).
12.
Z.
Jia
,
X.
Zhang
,
Y.
Liu
,
J.
Ma
,
C.
Liu
, and
Y.
Zhao
,
Nano Energy
1
(
6
),
783
788
(
2012
).
13.
L. E.
Greene
,
M.
Law
,
J.
Goldberger
,
F.
Kim
,
J. C.
Johnson
,
Y.
Zhang
, and
P.
Yang
,
Angew. Chem
.,
Int. Ed.
42
(
26
),
3031
3034
(
2003
).
14.
L.
Vayssieres
,
Adv. Mater.
15
(
5
),
464
466
(
2003
).
15.
D.
Kieven
,
T.
Dittrich
,
A.
Belaidi
,
J.
Tornow
,
K.
Schwarzburg
,
N.
Allsop
, and
M.
Lux-Steiner
,
Appl. Phys. Lett.
92
,
153107
(
2008
).
16.
M.
Krunks
,
E.
Kärber
,
A.
Katerski
,
K.
Otto
,
I. O.
Acik
,
T.
Dedova
, and
A.
Mere
,
Sol. Energy Mater. Sol. Cells
94
,
1191
(
2010
).
You do not currently have access to this content.