We develop an empirically based optoelectronic model to accurately simulate the photocurrent in organic photovoltaic (OPV) devices with novel materials including bulk heterojunction OPV devices based on a new low band gap dithienothiophene-DPP donor polymer, P(TBT-DPP), blended with PC70BM at various donor-acceptor weight ratios and solvent compositions. Our devices exhibit power conversion efficiencies ranging from 1.8% to 4.7% at AM 1.5G. Electron and hole mobilities are determined using space-charge limited current measurements. Bimolecular recombination coefficients are both analytically calculated using slowest-carrier limited Langevin recombination and measured using an electro-optical pump-probe technique. Exciton quenching efficiencies in the donor and acceptor domains are determined from photoluminescence spectroscopy. In addition, dielectric and optical constants are experimentally determined. The photocurrent and its bias-dependence that we simulate using the optoelectronic model we develop, which takes into account these physically measured parameters, shows less than 7% error with respect to the experimental photocurrent (when both experimentally and semi-analytically determined recombination coefficient is used). Free carrier generation and recombination rates of the photocurrent are modeled as a function of the position in the active layer at various applied biases. These results show that while free carrier generation is maximized in the center of the device, free carrier recombination is most dominant near the electrodes even in high performance devices. Such knowledge of carrier activity is essential for the optimization of the active layer by enhancing light trapping and minimizing recombination. Our simulation program is intended to be freely distributed for use in laboratories fabricating OPV devices.

2.
Alexandra K.
Duncan
, Materials360 Online (
2012
), see http://www.materials360online.com/newsDetails/13040 for more information about this company.
3.
R.
Mauer
,
I. A.
Howard
, and
F.
Laquai
,
J. Phys. Chem. Lett.
1
(
24
),
3500
(
2010
).
4.
R.
Mauer
,
I. A.
Howard
, and
F.
Laquai
,
J. Phys. Chem. Lett.
2
(
14
),
1736
(
2011
).
5.
G. A. H.
Wetzelaer
,
L. J. A.
Koster
, and
P. W. M.
Blom
,
Phys. Rev. Lett.
107
(
6
),
066605
(
2011
).
6.
W. F.
Pasveer
,
J.
Cottaar
,
C.
Tanase
,
R.
Coehoorn
,
P. A.
Bobbert
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
M. A. J.
Michels
,
Phys. Rev. Lett.
94
(
20
),
206601
(
2005
).
7.
Sentaurus Device (
Synopsys
,
2011
), see http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/SentaurusDevice.aspx for more information about this company.
8.
P. W. M.
Blom
,
V. D.
Mihailetchi
,
L. J. A.
Koster
, and
D. E.
Markov
,
Adv. Mater.
19
(
12
),
1551
(
2007
).
9.
L. J. A.
Koster
,
E. C. P.
Smits
,
V. D.
Mihailetchi
, and
P. W. M.
Blom
,
Phys. Rev. B
72
(
8
),
085205
(
2005
).
10.
J. D.
Kotlarski
,
P. W. M.
Blom
,
L. J. A.
Koster
,
M.
Lenes
, and
L. H.
Slooff
,
J. Appl. Phys.
103
(
8
),
084502
(
2008
).
11.
G. F.
Burkhard
,
E. T.
Hoke
, and
M. D.
McGehee
,
Adv. Mater.
22
(
30
),
3293
(
2010
).
12.
M. M.
Mandoc
,
L. J. A.
Koster
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
90
(
13
),
133504
(
2007
).
13.
B. A.
Gregg
and
M. C.
Hanna
,
J. Appl. Phys.
93
(
6
),
3605
(
2003
).
14.
A.
Petersen
,
T.
Kirchartz
, and
T. A.
Wagner
,
Phys. Rev. B
85
(
4
),
045208
(
2012
).
15.
Y.
Roichman
and
N.
Tessler
,
Appl. Phys. Lett.
80
(
11
),
1948
(
2002
).
16.
S.
Günes
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
Chem. Rev.
107
(
4
),
1324
(
2007
).
17.
T.
Kirchartz
,
B. E.
Pieters
,
K.
Taretto
, and
U.
Rau
,
J. Appl. Phys.
104
(
9
),
094513
(
2008
).
18.
A. J.
Moule
and
K.
Meerholz
,
Adv. Funct. Mater.
19
(
19
),
3028
(
2009
).
19.
S.
Yamamoto
,
J.
Guo
,
H.
Ohkita
, and
S.
Ito
,
Adv. Funct. Mater.
18
(
17
),
2555
(
2008
).
20.
R.
Pandey
and
R. J.
Holmes
,
Adv. Mater.
22
(
46
),
5301
(
2010
).
21.
C.
Deibel
,
T.
Strobel
, and
V.
Dyakonov
,
Adv. Mater.
22
(
37
),
4097
(
2010
).
22.
A.
Pivrikas
,
H.
Neugebauer
, and
N. S.
Sariciftci
,
IEEE J. Sel. Top. Quantum Electron.
16
(
6
),
1746
(
2010
).
23.
L. J. A.
Koster
,
V. D.
Mihailetchi
, and
P. W. M.
Blom
,
Appl. Phys. Lett.
88
(
5
),
052104
(
2006
).
24.
A.
Pivrikas
,
N. S.
Sariciftci
,
G.
Juska
, and
R.
Osterbacka
,
Prog. Photovoltaics
15
(
8
),
677
(
2007
).
25.
F.
Etzold
,
I. A.
Howard
,
N.
Forler
,
D. M.
Cho
,
M.
Meister
,
H.
Mangold
,
J.
Shu
,
M. R.
Hansen
,
K.
Mullen
, and
F.
Laquai
,
J. Am. Chem. Soc.
134
(
25
),
10569
(
2012
).
26.
F.
Etzold
,
I. A.
Howard
,
R.
Mauer
,
M.
Meister
,
T. D.
Kim
,
K. S.
Lee
,
N. S.
Baek
, and
F.
Laquai
,
J. Am. Chem. Soc.
133
(
24
),
9469
(
2011
).
27.
L. M.
Chen
,
Z. R.
Hong
,
G.
Li
, and
Y.
Yang
,
Adv. Mater.
21
(
14-15
),
1434
(
2009
).
28.
C. M. B.
Svanstrom
,
J.
Rysz
,
A.
Bernasik
,
A.
Budkowski
,
F.
Zhang
,
O.
Inganas
,
M. R.
Andersson
,
K. O.
Magnusson
,
J. J.
Benson-Smith
,
J.
Nelson
, and
E.
Moons
,
Adv. Mater.
21
(
43
),
4398
(
2009
).
29.
T.
Kirchartz
,
K.
Taretto
, and
U.
Rau
,
J. Phys. Chem. C
113
(
41
),
17958
(
2009
).
30.
C.
Schwarz
,
H.
Bassler
,
I.
Bauer
,
J. M.
Koenen
,
E.
Preis
,
U.
Scherf
, and
A.
Kohler
,
Adv. Mater.
24
(
7
),
922
(
2012
).
31.
J. C.
Wang
,
X. C.
Ren
,
S. Q.
Shi
,
C. W.
Leung
, and
P. K. L.
Chan
,
Org. Electron.
12
(
6
),
880
(
2011
).
32.
Z. M.
Beiley
,
E. T.
Hoke
,
R.
Noriega
,
J.
Dacuna
,
G. F.
Burkhard
,
J. A.
Bartelt
,
A.
Salleo
,
M. F.
Toney
, and
M. D.
McGehee
,
Adv. Energy Mater.
1
(
5
),
954
(
2011
).
33.
J. C.
Scott
and
G. G.
Malliaras
,
Chem. Phys. Lett.
299
(
2
),
115
(
1999
).
34.
See supplementary material at http://dx.doi.org/10.1063/1.4801662 for TEM tomography images, XRD images, and optical constants. The matlab program of our model is open source and available at http://www.mathworks.com/matlabcentral/fileexchange/ under the file name “Bulk Heterojunction Device Model” or from the Ana Claudia Arias research group homepage.

Supplementary Material

You do not currently have access to this content.