Bio-nanomaterials are one of the fastest developing sectors of industry and technology. Spider silk, a highly attractive light-weight biomaterial, has high tensile strength and elasticity and is compatible with human tissues, allowing for many areas of application. In comparison to spider silk fibers with diameters of several micrometers, spider mite silk fibers have much smaller diameters of tens of nanometers, making conventional tensile testing methods impractical. To determine the mechanical properties of adult and larval Tetranychus urticae silk fibers, we have performed three-point bending tests with an atomic force microscope. We found that because of the small diameters of these fibers, axial tension—due to both the applied force and a pre-existing strain—has a significant effect on the fiber response, even in the small-deformation limit. As a result, the typical Euler-Bernoulli-Timoshenko theory cannot be applied. We therefore follow the approach of Heidelberg et al. to develop a mechanical model of the fiber response that accounts for bending, an initial tension in the fibers, and a tension due to elongation during testing. This model provides self-consistent results, allowing us to determine that adult and larval fibers have Young's moduli of 24±3 GPa and 15±3 GPa, respectively. Both adult and larval fibers have an estimated ultimate strength of 200–300 MPa and a toughness of order 9 MJ/m3. We note that with increasing interest in the mechanical properties of very high aspect ratio nanomaterials, the influence of pre-existing tension must be considered in any measurements involving a bending test.

1.
Silk Polymers: Materials Science and Biotechnology
, edited by
D.
Kaplan
,
W. W.
Adams
,
B.
Farmer
, and
C.
Viney
(
American Chemical Society
,
1994
).
2.
G. H.
Altman
,
F.
Diaz
,
C.
Jakuba
,
T.
Calabro
,
R. L.
Horan
,
J.
Chen
,
H.
Lu
,
J.
Richmond
, and
D. L.
Kaplan
,
Biomaterials
24
,
401
(
2003
).
3.
A. C.
MacIntosh
,
V. R.
Kearns
,
A.
Crawford
, and
P. V.
Hatton
,
J. Tissue Eng. Regener. Med.
2
,
71
(
2008
).
4.
S.
Hofmann
,
S.
Knecht
,
R.
Langer
,
D. L.
Kaplan
,
G.
Vunjak-Novakovic
,
H. P.
Merkle
, and
L.
Meinel
,
Tissue Eng.
12
,
2729
(
2006
).
5.
J. M.
Gosline
,
M. E.
DeMont
, and
M. W.
Denny
,
Endeavour
10
,
37
(
1986
).
6.
S.-H.
Lee
,
C.
Tekmen
, and
W. M.
Sigmund
,
Mater. Sci. Eng., A
398
,
77
(
2005
).
7.
B.
Wu
,
A.
Heidelberg
, and
J. J.
Boland
,
Nat. Mater.
4
,
525
(
2005
).
8.
A.
Heidelberg
,
L. T.
Ngo
,
B.
Wu
,
M. A.
Phillips
,
S.
Sharma
,
T. I.
Kamins
,
J. E.
Sader
, and
J. J.
Boland
,
Nano Lett.
6
,
1101
(
2006
).
9.
H.
Ni
,
X.
Li
, and
H.
Gao
,
Appl. Phys. Lett.
88
,
043108
(
2006
).
10.
B.
Wen
,
J. E.
Sader
, and
J. J.
Boland
,
Phys. Rev. Lett.
101
,
175502
(
2008
).
11.
J.-P.
Salvetat
,
J.-M.
Bonard
,
N. H.
Thomson
,
A. J.
Kulik
,
L.
Forró
,
W.
Benoit
, and
L.
Zuppiroli
,
Appl. Phys. A
69
,
255
(
1999
).
12.
G.-T.
Kim
,
G.
Gu
,
U.
Waizmann
, and
S.
Roth
,
Appl. Phys. Lett.
80
,
1815
(
2002
).
13.
G.
Guhados
,
W.
Wan
,
X.
Sun
, and
J. L.
Hutter
,
J. Appl. Phys.
101
,
033514
(
2007
).
14.
E. P. S.
Tan
and
C. T.
Lim
,
Appl. Phys. Lett.
84
,
1603
(
2004
).
15.
G.
Guhados
,
W.
Wan
, and
J. L.
Hutter
,
Langmuir
21
,
6642
(
2005
).
16.
M. K.
Shin
,
S. I.
Kim
, and
S. J.
Kim
,
Appl. Phys. Lett.
89
,
231929
(
2006
).
17.
S.
Iwamoto
,
W.
Kai
,
A.
Isogai
, and
T.
Iwata
,
Biomacromolecules
10
,
2571
(
2009
).
18.
C. Q.
Chen
,
Y.
Shi
,
Y. S.
Zhang
,
J.
Zhu
, and
Y. J.
Yan
,
Phys. Rev. Lett.
96
,
075505
(
2006
).
19.
M.
Grbić
,
T.
Van Leeuwen
,
R. M.
Clark
,
S.
Rombauts
,
P.
Rouzé
,
V.
Grbić
,
E. J.
Osborne
,
W.
Dermauw
,
P. C. T.
Ngoc
,
F.
Ortego
,
P.
Hernández-Crespo
,
I.
Diaz
,
M.
Martinez
,
M.
Navajas
,
É.
Sucena
,
S.
Magalhães
,
L.
Nagy
,
R.
Pace
,
S.
Djuranović
,
G.
Smagghe
,
M.
Iga
,
O.
Christiaens
,
J. A.
Veenstra
,
J.
Ewer
,
R. M.
Villalobos
,
J. L.
Hutter
,
S. D.
Hudson
,
M.
Velez
,
S. V.
Yi
,
J.
Zeng
,
A.
Pires-daSilva
,
F.
Roch
,
M.
Cazaux
,
M.
Navarro
,
V.
Zhurov
,
G.
Acevedo
,
A.
Bjelica
,
J. A.
Fawcett
,
E.
Bonnet
,
C.
Martens
,
G.
Baele
,
L.
Wissler
,
A.
Sanchez-Rodriguez
,
L.
Tirry
,
C.
Blais
,
K.
Demeestere
,
S. R.
Henz
,
T. R.
Gregory
,
J.
Mathieu
,
L.
Verdon
,
L.
Farinelli
,
J.
Schmutz
,
E.
Lindquist
,
R.
Feyereisen
, and
Y.
Van de Peer
,
Nature (London)
479
,
487
(
2011
).
20.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
21.
H.-J.
Butt
and
M.
Jaschke
,
Nanotechnology
6
,
1
(
1995
).
22.
D. A.
Walters
,
J. P.
Cleveland
,
N. H.
Thomson
,
P. K.
Hansma
,
M. A.
Wendman
,
G.
Gurley
, and
V.
Elings
,
Rev. Sci. Instrum.
67
,
3583
(
1996
).
23.
24.
S. P.
Timoshenko
,
Philos. Mag.
41
,
744
(
1921
).
25.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 2nd ed. (
Pergamon Press
,
1970
).
26.
M.
Elices
,
J.
Pérez-Rigueiro
,
G. R.
Plaza
, and
G. V.
Guinea
,
J. Mater.
57
,
60
(
2005
).
You do not currently have access to this content.