This is a review of the theoretical and applied progress made based on the Constructal law of design and evolution in nature, with emphasis on the last decade. The Constructal law is the law of physics that accounts for the natural tendency of all flow systems (animate and inanimate) to change into configurations that offer progressively greater flow access over time. The progress made with the Constructal law covers the broadest range of science, from heat and fluid flow and geophysics, to animal design, technology evolution, and social organization (economics, government). This review presents the state of this fast growing field, and draws attention to newly opened directions for original research. The Constructal law places the concepts of life, design, and evolution in physics.

1.
A.
Bejan
, “
Constructal-theory network of conducting paths for cooling a heat generating volume
,”
Int. J. Heat Mass Transfer
40
,
799
816
(
1997
).
2.
A.
Bejan
,
Advanced Engineering Thermodynamics
, 2nd ed. (
Wiley
,
New York
,
1997
).
3.
T.
Basak
, “
The law of life: The bridge between Physics and Biology
,”
Phys Life Rev.
8
,
249
252
(
2011
).
4.
A.
Bejan
and
S.
Lorente
, “
Constructal theory of generation of configuration in nature and engineering
,”
J. Appl. Phys.
100
,
041301
(
2006
).
5.
A.
Kremer-Marietti
and
J.
Dhombres
,
L’Épistemologie
(
Ellipses
,
Paris
,
2006
).
6.
Constructal Theory of Social Dynamics
, edited by
A.
Bejan
and
G. W.
Merkx
(
Springer
,
New York
,
2007
).
7.
P.
Kalason
,
Le Grimoire des Rois: Théorie Constructale du Changement
(
L'Harmattan
,
Paris
,
2007
).
8.
P.
Kalason
,
Épistémologie Constructale du Lien Cultuel
(
L'Harmattan
,
Paris
,
2007
).
9.
A.
Bejan
and
S.
Lorente
,
Design With Constructal Theory
(
Wiley
,
Hoboken
,
2008
).
10.
Constructal Theory and Multi-Scale Geometries: Theory and Applications in Energetics, Chemical Engineering and Materials
, edited by
D.
Queiros-Conde
and
M.
Feidt
(
Les Presses de L'ENSTA
,
Paris
,
2009
).
11.
L.
Rocha
,
Convection in Channels and Porous Media: Analysis, Optimization, and Constructal Design
(
VDM Verlag
,
Saarbrücken
,
2009
).
12.
Constructal Human Dynamics, Security and Sustainability
, edited by
A.
Bejan
,
S.
Lorente
,
A. F.
Miguel
, and
A. H.
Reis
(
IOS Press
,
Amsterdam
,
2009
).
13.
G.
Lorenzini
,
S.
Moretti
, and
A.
Conti
,
Fin Shape Optimization Using Bejan's Constructal Theory
(
Morgan & Claypool Publishers
,
San Francisco
,
2011
).
14.
A.
Bachta
,
J.
Dhombres
, and
A.
Kremer-Marietti
,
Trois Ètudes sur la Loi Constructale d'Adrian Bejan
(
L'Harmattan
,
Paris
,
2008
).
15.
A.
Bejan
and
J. P.
Zane
,
Design in Nature: How the Constructal Law Governs Evolution in Biology, Physics, Technology, and Social Organization
(
Doubleday
,
New York
,
2012
).
16.
N.
Acuña
,
Mindshare: Igniting Creativity and Innovation Through Design Intelligence
(
Motion
,
Henderson, NV
,
2012
).
17.
L. A. O.
Rocha
,
S.
Lorente
, and
A.
Bejan
,
Constructal Law and the Unifying Principle of Design
(
Springer
,
New York
,
2012
).
18.
J. A.
Tuhtan
,
A Modeling Approach for Alpine Rivers Impacted by Hydropeaking Including the Second Law Inequality
(
Institute for Water and Environment-System Modeling, University of Stuttgart
,
2012
), Vol.
210
.
19.
A.
Bejan
,
Entropy Generation Through Heat and Fluid Flow
(
Wiley
,
New York
,
1982
).
20.
A.
Bejan
,
Entropy Generation Minimization
(
CRC Press
,
Boca Raton
,
1996
).
21.
A.
Bejan
and
S.
Lorente
, “
The constructal law and the evolution of design in nature
,”
Phys. Life Rev.
8
,
209
240
(
2011
).
22.
A. H.
Reis
, “
Constructal theory: From engineering to physics, and how flow systems develop shape and structure
,”
Appl. Mech. Rev.
59
,
269
282
(
2006
).
23.
A.
Bejan
and
S.
Lorente
, “
The constructal law of design and evolution in nature
,”
Philos. Trans. R. Soc. London, Ser. B
365
,
1335
1347
(
2010
).
24.
L.
Chen
, “
Progress in study on constructal theory and its applications
,”
Sci. China, Ser. E: Technol. Sci.
55
(
3
),
802
820
(
2012
).
25.
A.
Bejan
,
Advanced Engineering Thermodynamics
, 3rd ed. (
Wiley
,
Hoboken
,
2006
).
26.
A.
Bejan
,
S.
Lorente
, and
J.
Lee
, “
Unifying constructal theory of tree roots, canopies and forests
,”
J. Theor. Biol.
254
,
529
540
(
2008
).
27.
G. A.
Ledezma
,
A.
Bejan
, and
M.
Errera
, “
Constructal tree networks for heat transfer
,”
J. Appl. Phys.
82
,
89
100
(
1997
).
28.
M. R.
Errera
and
A.
Bejan
, “
Deterministic tree networks for river drainage basins
,”
Fractals
6
,
245
261
(
1998
).
29.
A.
Bejan
,
Shape and Structure From Engineering to Nature
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
30.
H.
Kobayashi
,
S.
Lorente
,
R.
Anderson
, and
A.
Bejan
, “
Trees and serpentines in a conducting body
,”
Int. J. Heat Mass Transfer
56
,
488
494
(
2013
).
31.
R.
Boichot
,
L.
Luo
, and
Y.
Fan
, “
Tree-network structure generation for heat conduction by cellular automaton
,”
Energy Convers. Manage.
50
,
376
386
(
2009
).
32.
S.
Wei
,
L.
Chen
, and
F.
Sun
, “
The area-point constructal optimization for discrete variable cross-section conducting path
,”
Appl. Energy
86
,
1111
1118
(
2009
).
33.
X.
Xianghua
,
L.
Xingang
, and
R.
Jianxun
, “
Optimization of heat conduction using combinatorial optimization algorithms
,”
Int. J. Heat Mass Transfer
50
,
1675
1682
(
2007
).
34.
M. M.
Fyrillas
, “
Heat conduction in a solid slab embedded with a pipe of general cross-section: Shape factor and shape optimization
,”
Int. J. Eng. Sci.
46
,
907
916
(
2008
).
35.
M.
Eslami
and
K.
Jafarpur
, “
Optimal distribution of imperfection in conductive constructal designs of arbitrary configurations
,”
J. Appl. Phys.
112
,
104905
(
2012
).
36.
L.
Combelles
,
S.
Lorente
, and
A.
Bejan
, “
Leaflike architecture for cooling a flat body
,”
J. Appl. Phys.
106
,
044906
(
2009
).
37.
B. V. K.
Reddy
,
P. V.
Ramana
, and
A.
Narasimhan
, “
Steady and transient thermo-hydraulic performance of disc with tree-shaped micro-channel networks with and without radial inclination
,”
Int. J. Therm. Sci.
47
,
1482
1489
(
2008
).
38.
A.
Sciacovelli
and
V.
Verda
, “
Entropy generation minimization for the optimal design of the fluid distribution system in a circular MCFC
,”
Int. J. Thermodyn.
14
,
167
177
(
2011
).
39.
H. R.
Williams
,
R. S.
Trask
,
P. M.
Weaver
, and
I. P.
Bond
, “
Minimum mass vascular networks in multifunctional materials
,”
J. R. Soc., Interface
5
,
55
65
(
2008
).
40.
P.
Bieupoude
,
Y.
Azoumah
, and
P.
Neveu
, “
Optimization of drinking water distribution networks: Computer-based methods and constructal design
,”
Comput. Environ. Urban Syst.
36
,
434
444
(
2012
).
41.
A. F.
Miguel
, “
Dendritic structures for fluid flow: Laminar, turbulent and constructal design
,”
J. Fluids Struct.
26
,
330
335
(
2010
).
42.
C.
Bai
and
L.
Wang
, “
Constructal structure of nanofluids
,”
J. Appl. Phys.
108
,
074317
(
2010
).
43.
J.
Fan
and
L.
Wang
, “
Constructal design of nanofluids
,”
Int. J. Heat Mass Transfer
53
,
4238
4247
(
2010
).
44.
C.
Bai
and
L.
Wang
, “
Constructal design of particle volume fraction in nanofluids
,”
J. Heat Transfer
131
,
112402
(
2009
).
45.
F.
Wu
,
L.
Chen
,
A.
Shu
,
X.
Kan
,
K.
Wu
, and
Z.
Yang
, “
Constructal design of stack filled with parallel plates in standing-wave thermo-acoustic cooler
,”
Cryogenics
49
,
107
111
(
2009
).
46.
P.
Xu
,
X. Q.
Wang
,
A. S.
Mujumdar
,
C.
Yap
, and
B. M.
Yu
, “
Thermal characteristics of tree-shaped microchannel nets with/without loops
,”
Int. J. Therm. Sci.
48
,
2139
2147
(
2009
).
47.
H.
Ghaedamini
,
M. R.
Salimpour
, and
A.
Campo
, “
Constructal design of reverging microchannels for convective cooling of circular disc
,”
Int. J. Therm. Sci.
50
,
1051
1061
(
2011
).
48.
S.
Tescari
,
N.
Mazet
, and
P.
Neveu
, “
Constructal theory through thermodynamics of irreversible processes framework
,”
Energy Convers. Manage.
52
,
3176
3188
(
2011
).
49.
A.
Nakayama
,
F.
Kuwahara
, and
W.
Liu
, “
A macroscopic model for countercurrent bioheat transfer in a circulatory system
,”
J. Porous Media
12
,
289
300
(
2009
).
50.
H.
Kobayashi
,
S.
Lorente
,
R.
Anderson
, and
A.
Bejan
, “
Freely morphing tree structures in a conducting body
,”
Int. J. Heat Mass Transfer
55
,
4744
47523
(
2012
).
51.
S.
Lorente
,
W.
Wechsatol
, and
A.
Bejan
, “
Tree-shaped flow structures designed by minimizing path lengths
,”
Int. J. Heat Mass Transfer
45
,
3299
3312
(
2002
).
52.
H.
Ghaedamini
,
M. R.
Salimpour
, and
A. S.
Mujumdar
, “
The effect of svelteness on the bifurcation angles role in pressure drop and flow uniformity of tree-shaped microchannels
,”
Appl. Therm. Eng.
31
,
708
716
(
2011
).
53.
A.
Bejan
,
Convection Heat Transfer
(
Wiley
,
New York
,
1984
), Problem 4.11, p.
15
7
.
54.
A.
Bejan
and
E.
Sciubba
, “
The optimal spacing of parallel plates cooled by forced convection
,”
Int. J. Heat Mass Transfer
35
,
3259
3264
(
1992
).
55.
A.
Bejan
, “
Dendritic constructal heat exchanger with small-scale crossflows and larger-scales counterflows
,”
Int. J. Heat Mass Transfer
45
,
4607
4620
(
2002
).
56.
G.
Lorenzini
,
R. L.
Corrêa
,
E. D.
dos Santos
, and
L. A. O.
Rocha
, “
Constructal design of complex assembly of fins
,”
J. Heat Transfer
133
,
081902
(
2011
).
57.
D.-K.
Kim
, “
Thermal optimization of plate-fin heat sinks with fins of variable thickness under natural convection
,”
Int. J. Heat Mass Transfer
55
,
752
761
(
2012
).
58.
S.-H.
Yu
,
K.-S.
Lee
, and
S.-J.
Yook
, “
Optimum design of a radial heat sink under natural convection
,”
Int. J. Heat Mass Transfer
54
,
2499
2505
(
2011
).
59.
D.
Bhanja
and
B.
Kundu
, “
Thermal analysis of a constructal T-shaped porous fin with radiation effects
,”
Int. J. Refrigeration
34
,
1483
1496
(
2011
).
60.
G.
Lorenzini
and
S.
Moretti
, “
A Bejan's constructal theory approach to the overall optimization of heat exchanging finned modules with air in forced convection and laminar flow condition
,”
J. Heat Transfer
131
,
081801
(
2009
).
61.
G.
Lorenzini
and
L. A. O.
Rocha
, “
Constructal design of Y-shaped assembly of fins
,”
Int. J. Heat Mass Transfer
49
,
4552
4557
(
2006
).
62.
B.
Kundu
and
D.
Bhanja
, “
Performance and optimization analysis of a constructal T-shaped fin subject to variable thermal conductivity and convective heat transfer coefficient
,”
Int. J. Heat Mass Transfer
53
,
254
267
(
2010
).
63.
G.
Lorenzini
and
L. A. O.
Rocha
, “
Constructal design of T–Y assembly of fins for an optimized heat removal
,”
Int. J. Heat Mass Transfer
52
,
1458
1463
(
2009
).
64.
G.
Lorenzini
and
L. A. O.
Rocha
, “
Geometric optimization of T-Y-shaped cavity according to Constructal design
,”
Int. J. Heat Mass Transfer
52
,
4683
4688
(
2009
).
65.
G.
Lorenzini
and
S.
Moretti
, “
Numerical performance analysis of constructal I and Y finned heat exchanging modules
,”
J. Electron. Packag.
131
,
031012
(
2009
).
66.
G.
Lorenzini
,
C.
Biserni
, and
L. A. O.
Rocha
, “
Geometric optimization of isothermal cavities according to Bejan's theory
,”
Int. J. Heat Mass Transfer
54
,
3868
3873
(
2011
).
67.
C.
Biserni
,
L. A. O.
Rocha
,
G.
Stanescu
, and
E.
Lorenzini
, “
Constructal H-shaped cavities according to Bejan's theory
,”
Int. J. Heat Mass Transfer
50
,
2132
2138
(
2007
).
68.
T.
Bello-Ochende
,
J. P.
Meyer
, and
O. I.
Ogunronbi
, “
Constructal multiscale cylinders rotating in cross-flow
,”
Int. J. Heat Mass Transfer
54
,
2568
2577
(
2011
).
69.
T.
Bello-Ochende
,
J. P.
Meyer
, and
J.
Dirker
, “
Three-dimensional multi-scale plate assembly for maximum heat transfer rate density
,”
Int. J. Heat Mass Transfer
53
,
586
593
(
2010
).
70.
O. T.
Olakoyejo
,
T.
Bello-Ochende
, and
J. P.
Meyer
, “
Constructal conjugate cooling channels with internal heat generation
,”
Int. J. Heat Mass Transfer
55
,
4385
4396
(
2012
).
71.
O. T.
Olakoyejo
,
T.
Bello-Ochende
, and
J. P.
Meyer
, “
Mathematical optimization of laminar forced convection heat transfer through vascularized solid with square channels
,”
Int. J. Heat Mass Transfer
55
,
2402
2411
(
2012
).
72.
P.
Canhoto
and
A. H.
Reis
, “
Optimization of fluid flow and internal geometric structure of volume cooled by forced convection in an array of parallel tubes
,”
Int. J. Heat Mass Transfer
54
,
4288
4299
(
2011
).
73.
C.
Villemure
,
L.
Gosselin
, and
G.
Gendron
, “
Minimizing hot spot temperature of porous stacking in natural convection
,”
Int. J. Heat Mass Transfer
51
,
4025
4037
(
2008
).
74.
M.
Tye-Gingras
and
L.
Gosselin
, “
Thermal resistance minimization of a fin-and-porous-medium heat sink with evolutionary algorithms
,”
Numer. Heat Transfer, Part A
54
,
349
366
(
2008
).
75.
A.
Narasimhan
and
S.
Karra
, “
An inverse heat transfer method to provide near-isothermal surface for disc heaters used in microlithography
,”
Int. J. Heat Mass Transfer
49
,
4624
4632
(
2006
).
76.
P.
Bhave
,
A.
Narasimhan
, and
D. A. S.
Rees
, “
Natural convection heat transfer enhancement using adiabatic block: Optimal block size and Prandtl number effect
,”
Int. J. Heat Mass Transfer
49
,
3807
3818
(
2006
).
77.
C.
Zamfirescu
and
I.
Dincer
, “
Thermodynamic performance analysis and optimization of a SOFC-H+ system
,”
Thermochim. Acta
486
,
32
40
(
2009
).
78.
H.
Sun
,
R.
Li
,
E.
Chénier
,
G.
Lauriat
, and
J.
Padet
, “
Optimal place spacing for mixed convection from an array of vertical isothermal plates
,”
Int. J. Therm. Sci.
55
,
16
30
(
2012
).
79.
W.-J.
Yang
,
T.
Furukawa
, and
S.
Torii
, “
Optimal package design of stacks of convection-cooled printed circuit boards using entropy generation minimization method
,”
Int. J. Heat Mass Transfer
51
,
4038
4046
(
2008
).
80.
M.
Yari
, “
Entropy generation analysis for Couette–Poiseuille flow through parallel-plates microchannel
,”
Int. J. Exergy
6
,
809
825
(
2009
).
81.
Y.-T.
Yang
and
H.-S.
Peng
, “
Numerical study of thermal and hydraulic performance of compound heat sink
,”
Numer. Heat Transfer, Part A
55
,
432
447
(
2009
).
82.
A.
Andreozzi
,
B.
Buonomo
, and
O.
Manca
, “
Transient natural convection in vertical channels symmetrically heated at uniform heat flux
,”
Numer. Heat Transfer, Part A
55
,
409
431
(
2009
).
83.
D.-K.
Kim
,
S. J.
Kim
, and
J.-K.
Bae
, “
Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow
,”
Int. J. Heat Mass Transfer
52
,
3510
3517
(
2009
).
84.
V. A. P.
Raja
,
T.
Basak
, and
S. K.
Das
, “
Thermal performance of a multi-block heat exchanger designed on the basis of Bejan's constructal theory
,”
Int. J. Heat Mass Transfer
51
,
3582
3594
(
2008
).
85.
A. P.
Sasmito
,
J. C.
Kurnia
, and
A. S.
Mujumdar
, “
Numerical evaluation of various gas and coolant channel designs for high performance liquid-cooled proton exchange membrane fuel cell stacks
,”
Energy
44
,
278
291
(
2012
).
86.
B.
Ramos-Alvarado
,
A.
Hernandez-Guerrero
,
F.
Elizalde-Blancas
, and
M. W.
Ellis
, “
Constructal flow distributor as a bipolar plate for proton exchange membrane fuel cells
,”
Int. J. Hydrogen Energy
356
,
12965
12976
(
2011
).
87.
H.
Wen
,
J. C.
Ordonez
, and
J. V. C.
Vargas
, “
Single solid oxide fuel cell modeling and optimization
,”
J. Power Sources
196
,
7519
7532
(
2011
).
88.
M.
Mehrgoo
and
M.
Amidpour
, “
Derivation of optimal geometry of a multi-effect humidification-dehumidification desalination unit: A constructal design
,”
Desalination
281
,
234
242
(
2011
).
89.
M.
Mehrgoo
and
M.
Amidpour
, “
Constructal design of humidification–dehumidification desalination unit architecture
,”
Desalination
271
,
62
71
(
2011
).
90.
F.
Mathieu-Potvin
and
L.
Gosselin
, “
Threshold length of maximal reaction rate in catalytic microchannels
,”
Chem. Eng. J.
188
,
86
97
(
2012
).
91.
Y.
Chen
,
C.
Zhang
,
R.
Wu
, and
M.
Shi
, “
Methanol steam reforming in microreactor with constructal tree-shaped network
,”
J. Power Sources
196
,
6366
6373
(
2011
).
92.
R. A.
Hart
and
A. K.
da Silva
, “
Experimental thermal-hydraulic evaluation of constructal microfluidic structures under fully constrained conditions
,”
Int. J. Heat Mass Transfer
54
,
3661
3671
(
2011
).
93.
R. A.
Hart
,
M. J. V.
Ponkala
, and
A. K.
da Silva
, “
Development and testing of a constructal microchannel flow system with dynamically controlled complexity
,”
Int. J. Heat Mass Transfer
54
,
5470
5480
(
2011
).
94.
A. V.
Azad
and
M.
Amidpour
, “
Economic optimization of shell and tube heat exchanger based on constructal theory
,”
Fuel Energy Abstr.
36
,
1087
1096
(
2011
).
95.
R. P.
Chopade
,
S. C.
Mishra
,
P.
Mahanta
, and
S.
Maruyama
, “
Estimation of power heaters in a radiant furnace for uniform thermal conditions on 3–D irregular shaped objects
,”
Int. J. Heat Mass Transfer
55
,
4340
4351
(
2012
).
96.
S. B.
Zhou
,
L. G.
Chen
, and
F. R.
Sun
, “
Constructal optimization for a solid-gas reactor based on triangular element
,”
Sci. China, Ser. E: Technol. Sci.
51
,
1554
1562
(
2008
).
97.
J.-F.
Cornet
, “
Calculation of optimal design and ideal productivities of volumetrically lightened photobioreactors using the constructal approach
,”
Chem. Eng. Sci.
65
,
985
998
(
2010
).
98.
S.
Tescari
,
N.
Mazet
, and
P.
Neveu
, “
Constructal method to optimize solar thermochemical reactor design
,”
Sol. Energy
84
,
1555
1566
(
2010
).
99.
A. R.
Kacimov
,
H.
Klammler
,
N.
Il'yinskii
, and
K.
Hatfield
, “
Constructal design of permeable reactive barriers: Groundwater-hydraulics criteria
,”
J. Eng. Math.
71
,
319
338
(
2011
).
100.
Z.
Fan
,
X.
Zhou
,
L.
Luo
, and
W.
Yuan
, “
Experimental investigation of the flow distribution of a 2-dimensional constructal distributor
,”
Exp. Therm. Fluid Sci.
33
,
77
83
(
2008
).
101.
D.
Tondeur
,
Y.
Fan
, and
L.
Luo
, “
Constructal optimization of arborescent structures with flow singularities
,”
Chem. Eng. Sci.
64
,
3968
3982
(
2009
).
102.
J.
Yue
,
R.
Boichot
,
L.
Luo
,
Y.
Gonthier
,
G.
Chen
, and
Q.
Yuan
, “
Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors
,”
AIChE J.
56
,
298
317
(
2010
).
103.
A.
Karakas
,
U.
Camdali
, and
M.
Tunc
, “
Constructal optimisation of heat generating volumes
,”
Int. J. Exergy
6
,
637
654
(
2009
).
104.
C.
Zhang
,
Y.
Chen
,
R.
Wu
, and
M.
Shi
, “
Flow boiling in constructal tree-shaped minichannel network
,”
Int. J. Heat Mass Transfer
54
,
202
209
(
2010
).
105.
X.
Daguenet-Frick
,
J.
Bonjour
, and
R.
Revellin
, “
Constructal microchannel network for flow boiling in a disc-shaped body
,”
IEEE Trans. Compon. Packag. Technol.
33
,
115
126
(
2010
).
106.
R.
Revellin
,
J. R.
Thome
,
A.
Bejan
, and
J.
Bonjour
, “
Constructal tree-shaped microchannel networks for maximizing the saturated critical heat flux
,”
Int. J. Therm. Sci.
48
,
342
352
(
2009
).
107.
W. X.
Liu
,
W. X.
Tian
,
Y. W.
Wu
,
G. H.
Su
,
S. Z.
Qiu
,
X.
Yan
,
Y. P.
Huang
, and
D. X.
Du
, “
An improved mechanistic critical heat flux model and its application to motion conditions
,”
Prog. Nucl. Energy
61
,
88
101
(
2012
).
108.
Y.
Kim
,
S.
Lorente
, and
A.
Bejan
, “
Steam generator structure: Continuous model and constructal design
,”
Int. J. Energy Res.
35
,
336
345
(
2011
).
109.
A.
Norouzi
and
M.
Amidpour
, “
Optimal thermodynamic and economic volume of a heat recovery steam generator by constructal design
,”
Int. Commun. Heat Mass Transfer
39
,
1286
1292
(
2012
).
110.
Y. S.
Kim
,
S.
Lorente
, and
A.
Bejan
, “
Distribution of size in steam turbine power plants
,”
Int. J. Energy Res.
33
,
989
998
(
2009
).
111.
D.-H.
Kang
,
S.
Lorente
, and
A.
Bejan
, “
Constructal architecture for heating a stream by convection
,”
Int. J. Heat Mass Transfer
53
,
2248
2255
(
2010
).
112.
D.-H.
Kang
,
S.
Lorente
, and
A.
Bejan
, “
Constructal dendritic configuration for the radiation heating of a solid stream
,”
J. Appl. Phys.
107
,
114910
(
2010
).
113.
Y.
Kim
,
S.
Lorente
, and
A.
Bejan
, “
Constructal multi-tube configuration for natural and forced convection in cross-flow
,”
Int. J. Heat Mass Transfer
53
,
5121
5128
(
2010
).
114.
A.
Koonsrisuk
,
S.
Lorente
, and
A.
Bejan
, “
Constructal solar chimney configuration
,”
Int. J. Heat Mass Transfer
53
,
327
333
(
2010
).
115.
S.
Lorente
,
A.
Koonsrisuk
, and
A.
Bejan
, “
Constructal distribution of solar chimney power plants: Few large and many small
,”
Int. J. Green Energy
7
,
577
592
(
2010
).
116.
R.
Sangi
,
M.
Amidpour
, and
B.
Hosseinizadeh
, “
Modeling and numerical simulation of solar chimney power plants
,”
Sol. Energy
85
,
829
838
(
2011
).
117.
Z.
Zou
,
Z.
Guan
,
H.
Gurgenci
, and
Y.
Lu
, “
Solar enhanced natural draft dry cooling tower for geothermal power applications
,”
Sol. Energy
86
,
2686
2694
(
2012
).
118.
A.
Bejan
,
S.
Lorente
, and
K.-M.
Wang
, “
Networks of channels for self-healing composite materials
,”
J. Appl. Phys.
100
,
033528
(
2006
).
119.
K.-M.
Wang
,
S.
Lorente
, and
A.
Bejan
, “
Vascularized networks with two optimized channels sizes
,”
J. Phys. D: Appl. Phys.
39
,
3086
3096
(
2006
).
120.
S.
Kim
,
S.
Lorente
, and
A.
Bejan
, “
Vascularized materials: Tree-shaped flow architectures matched canopy to canopy
,”
J. Appl. Phys.
100
,
063525
(
2006
).
121.
J.
Lee
,
S.
Lorente
, and
A.
Bejan
, “
Vascular design for thermal management of heated structures
,”
Aeronaut. J.
113
,
397
407
(
2009
).
122.
A.
Bejan
and
M. R.
Errera
, “
Convective trees of fluid channels for volumetric cooling
,”
Int. J. Heat Mass Transfer
43
,
3105
3118
(
2000
).
123.
S.
Kim
,
S.
Lorente
,
A.
Bejan
,
W.
Miller
, and
J.
Morse
, “
The emergence of vascular design in three dimensions
,”
J. Appl. Phys.
103
,
123511
(
2008
).
124.
E.
Cetkin
,
S.
Lorente
, and
A.
Bejan
, “
Natural constructal emergence of vascular design with turbulent flow
,”
J. Appl. Phys.
107
,
114901
(
2010
).
125.
A. M.
Aragón
,
R.
Saksena
,
B. D.
Kozola
,
P. H.
Geubelle
,
K. T.
Christiansen
, and
S. R.
White
, “
Multi-physics optimization of three-dimensional microvascular polymeric components
,”
J. Comput. Phys.
233
,
132
(
2013
).
126.
S.
Soghrati
,
P. R.
Thakre
,
S. R.
White
,
N. R.
Sottos
, and
P. H.
Geubelle
, “
Computational modeling and design of actively-cooled microvascular materials
,”
Int. J. Heat Mass Transfer
55
,
5309
5321
(
2012
).
127.
K.-H.
Cho
,
W.-P.
Chang
, and
M.-H.
Kim
, “
A numerical and experimental study to evaluate performance of vascularized cooling plates
,”
Int. J. Heat Fluid Flow
32
,
1186
1198
(
2011
).
128.
K.-H.
Cho
and
C.-W.
Choi
, “
Hydraulic-thermal performance of vascularized cooling plates with semi-circular cross-section
,”
Appl. Therm. Eng.
157
,
157
166
(
2012
).
129.
W.
Wechsatol
,
J. C.
Ordonez
, and
S.
Kosaraju
, “
Constructal dendritic geometry and the existence of asymmetric bifurcation
,”
J. Appl. Phys.
100
,
113514
(
2006
).
130.
M. S.
Sayeed
,
I. A.
Ahmed
,
A. A.
Syed
,
P. H.
Raju
, and
M. S.
Salman
, “
Experimental study of tree networks for minimal pumping power
,”
Int. J. Des. Nat. Ecodyn.
3
,
135
149
(
2008
).
131.
R.
Godde
and
H.
Kurz
, “
Structural and biophysical simulation of angiogenesis and vascular remodeling
,”
Dev. Dyn.
220
,
387
401
(
2001
).
132.
L.
Gosselin
, “
Optimization of tree-shaped fluid networks with size limitations
,”
Int. J. Therm. Sci.
46
,
434
443
(
2007
).
133.
Y.
Kwak
,
D.
Pence
,
J.
Liburdy
, and
V.
Narayanan
, “
Gas-liquid flows in a microscale fractal-like branching flow networks
,”
Int. J. Heat Fluid Flow
30
,
868
876
(
2009
).
134.
K.-H.
Cho
and
M.-H.
Kim
, “
Transient thermal-fluid flow characteristics of vascular networks
,”
Int. J. Heat Mass Transfer
55
,
3533
3540
(
2012
).
135.
A. M.
Aragón
,
J. K.
Wayer
,
P. H.
Geubelle
,
D. E.
Goldberg
, and
S. R.
White
, “
Design of microvascular flow networks using multi-objective genetic algorithms
,”
Comput. Methods Appl. Mech. Eng.
197
,
4399
4410
(
2008
).
136.
K.-H.
Cho
and
M.-H.
Kim
, “
Fluid flow characteristics of vascularized channel networks
,”
Chem. Eng. Sci.
65
,
6270
6281
(
2010
).
137.
R.
Boichot
and
L.
Luo
, “
A simple cellular automaton algorithm to optimise heat transfer in complex configurations
,”
Int. J. Exergy
7
,
51
64
(
2010
).
138.
X.-Q.
Wang
,
P.
Xu
,
A. S.
Mujumdar
, and
C.
Yap
, “
Flow and thermal characteristics of offset branching network
,”
Int. J. Therm. Sci.
49
,
272
280
(
2010
).
139.
T.
Bello-Ochende
,
J. P.
Meyer
, and
F. U.
Ighalo
, “
Combined numerical optimization and constructal theory for the design of microchannel heat sinks
,”
Numer. Heat Transfer, Part A
58
,
882
899
(
2010
).
140.
Y.
Chen
,
C.
Zhang
,
M.
Shi
, and
Y.
Yang
, “
Thermal and hydrodynamic characteristics of constructal tree-shaped minichannel heat sink
,”
AIChE J.
56
,
2018
2029
(
2009
).
141.
Y. S.
Muzychka
, “
Constructal multi-scale design of compact micro-tube heat sinks and heat exchangers
,”
Int. J. Therm. Sci.
46
,
245
252
(
2007
).
142.
Y. S.
Muzychka
, “
Constructal design of forced convection cooled microchannel heat sinks and heat exchangers
,”
Int. J. Heat Mass Transfer
48
,
3119
3127
(
2005
).
143.
M. R.
Salimpour
,
M.
Sharifhasan
, and
E.
Shirani
, “
Constructal optimization of the geometry of an array of micro-channels
,”
Int. Commun. Heat Mass Transfer
38
,
93
99
(
2010
).
144.
D.
Haller
,
P.
Woias
, and
N.
Kockmann
, “
Simulation and experimental investigation of pressure loss and heat transfer in microchannel networks containing bends and T-junctions
,”
Int. J. Heat Mass Transfer
52
,
2678
2689
(
2009
).
145.
S.
Lorente
and
A.
Bejan
, “
Constructal design of vascular porous materials and electrokinetic mass transfer
,”
Transp. Porous Media
77
,
305
322
(
2009
).
146.
X.
Zeng
,
W.
Dai
, and
A.
Bejan
, “
Vascular countercurrent network for 3-D triple-layered skin structure with radiation heating
,”
Numer. Heat Transfer, Part A
57
,
369
391
(
2010
).
147.
X.
Tang
,
W.
Dai
,
R.
Nassar
, and
A.
Bejan
, “
Optimal temperature distribution in a three-dimensional triple-layered skin structure embedded with artery and vein vasculature
,”
Numer. Heat Transfer, Part A
50
,
809
834
(
2006
).
148.
K.-C.
Liu
,
Y.-N.
Wang
, and
Y.-S.
Chen
, “
Investigation on the bio-heat transfer with dual-phase-lag effect
,”
Int. J. Therm. Sci.
58
,
29
35
(
2012
).
149.
P.
Yuan
,
S.-B.
Wang
, and
H.-M.
Lee
, “
Estimation of the equivalent perfusion rate of Pennes model in an experimental bionic tissue without blood flow
,”
Int. Commun. Heat Mass Transfer
39
,
236
241
(
2012
).
150.
E.
Cetkin
,
S.
Lorente
, and
A.
Bejan
, “
Vascularization for cooling a plate heated by a randomly moving source
,”
J. Appl. Phys.
112
,
084906
(
2012
).
151.
A.
Bejan
, “
The constructal-law origin of the wheel, size, and skeleton in animal design
,”
Am. J. Phys.
78
,
692
699
(
2010
).
152.
S.
Lorente
and
A.
Bejan
, “
Few large and many small: hierarchy in movement on earth
,”
Int. Des. Nat. Ecodyn.
5
,
254
267
(
2010
).
153.
S.
Lorente
,
J.
Lee
, and
A.
Bejan
, “
The ‘flow of stresses' concept: The analogy between mechanical strength and heat convection
,”
Int. J. Heat Mass Transfer
53
,
2963
2968
(
2010
).
154.
E.
Cetkin
,
S.
Lorente
, and
A.
Bejan
, “
Vascularization for cooling and mechanical strength
,”
Int. J. Heat Mass Transfer
54
,
2774
2781
(
2011
).
155.
E.
Cetkin
,
S.
Lorente
, and
A.
Bejan
, “
Hybrid grid and tree structures for cooling and mechanical strength
,”
J. Appl. Phys.
110
,
064910
(
2011
).
156.
L.
Chen
,
Z.
Xie
, and
F.
Sun
, “
Multiobjective constructal optimization of an insulating wall combining heat flow, strength and weight
,”
Int. J. Therm. Sci.
50
,
1782
1789
(
2011
).
157.
K.
Schmidt-Nielsen
,
Scaling: Why Is Animal Size So Important
(
Cambridge University Press
,
Cambridge, UK
,
1984
).
158.
E. R.
Weibel
,
Symmorphosis: On Form and Function in Shaping Life
(
Harvard University Press
,
Cambridge, MA
,
2000
).
159.
S.
Vogel
,
Life's Devices
(
Princeton University Press
,
Princeton, NJ
,
1988
).
160.
E. R.
Weibel
,
C. R.
Taylor
, and
L.
Bolis
,
Principles of Animal Design. The Optimization and Symmorphosis Debate
(
Cambridge University Press
,
Cambridge, UK
,
1998
).
161.
H.
Hoppeler
and
E. R.
Weibel
, “
Scaling functions to body size: Theories and facts, special issue
,”
J. Exp. Biol.
208
,
1573
1769
(
2005
).
162.
A.
Bejan
,
A.
Morega
,
G. B.
West
, and
J. H.
Brown
, “
Constructing a theory for scaling and more
,”
Phys. Today
58
(
7
),
20
(
2005
).
163.
A.
Bejan
, “
The constructal law of organization in nature: Tree-shaped flows and body size
,”
J. Exp. Biol.
208
,
1677
1686
(
2005
).
164.
A.
Bejan
and
J. H.
Marden
, “
Unifying constructal theory for scale effects in running, swimming and flying
,”
J. Exp. Biol.
209
,
238
248
(
2006
).
165.
A.
Bejan
and
J. H.
Marden
, “
Constructing animal locomotion from new thermodynamics theory
,”
Am. Sci.
94
,
342
349
(
2006
).
166.
D. L.
Altshuler
,
R.
Dudley
,
S. M.
Heredia
, and
J. A.
McGuire
, “
Allometry of hummingbird lifting performance
,”
J. Exp. Biol.
213
(
5
),
725
734
(
2010
).
167.
A. S.
Perelson
and
F. W.
Wiegel
, “
Scaling aspects of lymphocyte trafficking
,”
J. Theor. Biol.
257
(
1
),
9
16
(
2009
).
168.
K.
Sato
,
Y.
Watanuki
,
A.
Takahashi
,
P. J.
Miller
,
H.
Tanaka
,
R.
Kawabe
,
P. J.
Ponganis
,
Y.
Handrich
,
T.
Akamatsu
,
Y.
Watanabe
,
Y.
Mitani
,
D. P.
Costa
,
C. A.
Bost
,
K.
Aoki
,
M.
Amano
,
P.
Trathan
,
A.
Shapiro
, and
Y.
Naito
, “
Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans
,”
Proc. R. Soc. London, Ser. B
274
,
471
477
(
2007
).
169.
R. G.
Kasimova
,
Yu. V.
Obnosov
,
F. B.
Baksht
, and
A. R.
Kacimov
, “
Optimal shape of anthill dome: Bejan's constructal law revisited
,”
Ecol. Modell.
250
,
384
390
(
2013
).
170.
J. A.
Tuhtan
, “
Go with the flow: Connecting energy demand, hydropower, and fish using constructal theory
,”
Phys. Life Rev.
8
,
253
254
(
2011
).
171.
J. D.
Charles
and
A.
Bejan
, “
The evolution of speed, size and shape in modern athletics
,”
J. Exp. Biol.
212
,
2419
2425
(
2009
).
172.
A.
Bejan
,
E. C.
Jones
, and
J. D.
Charles
, “
The evolution of speed in athletics: Why the fastest runners are black and swimmers white
,”
Int. J. Des. Nat. Ecodyn.
5
(
3
),
199
211
(
2010
).
173.
S.
Lorente
,
E.
Cetkin
,
T.
Bello-Ochende
,
J. P.
Meyer
, and
A.
Bejan
, “
The constructal-law physics of why swimmers must spread their fingers and toes
,”
J. Theor. Biol.
308
,
141
146
(
2012
).
174.
A.
Bejan
, “
Why the bigger live longer and travel farther: Animals, vehicles, rivers and the winds
,”
Sci. Rep.
2
,
594
(
2012
).
175.
A. F.
Miguel
, “
The physics principle of the generation of flow configuration
,”
Phys. Life Rev.
8
,
243
244
(
2011
).
176.
G.
Resconi
, “
Morphotronics and constructal theory, LINDI 2011
,” in
3rd IEEE International Symposium on Logistics and Industrial Informatics
,
Budapest, Hungary
, 25–27 August
2011
.
177.
A. H.
Reis
, “
Design in nature, and the laws of physics
,”
Phys. Life Rev.
8
,
255
256
(
2011
).
178.
A.
Bejan
and
J. H.
Marden
, “
The constructal unification of biological and geophysical design
,”
Phys. Life Rev.
6
,
85
102
(
2009
).
179.
L.
Wang
, “
Universality of design and its evolution
,”
Phys. Life Rev.
8
,
257
258
(
2011
).
180.
L. A. O.
Rocha
, “
Constructal law: From the law of physics to applications and conferences
,”
Phys. Life Rev.
8
,
245
246
(
2011
).
181.
Y.
Ventikos
, “
The importance of the constructal framework in understanding and eventually replicating structure in tissue
,”
Phys. Life Rev.
8
,
241
242
(
2011
).
182.
S.
Quéré
, “
Constructal theory of plate tectonics
,”
Int. J. Des. Nat. Ecodyn.
5
,
242
253
(
2010
).
183.
A. H.
Reis
and
C.
Gama
, “
Sand size versus beachface slope –An explanation based on the Constructal law
,”
Geomorphology
114
,
276
283
(
2010
).
184.
A. H.
Reis
, “
Constructal view of scaling laws of river basins
,”
Geomorphology
78
,
201
206
(
2006
).
185.
A.
Bejan
,
S.
Lorente
,
A. F.
Miguel
, and
A. H.
Reis
, “
Constructal theory of distribution of river sizes
,” in
Advanced Engineering Thermodynamics
, 3rd ed., edited by
A.
Bejan
(
Wiley
,
Hoboken
,
2006
), Sec. 13.5.
186.
B. J.
Chung
and
A.
Vaidya
, “
Non-equilibrium pattern selection in particle sedimentation
,”
Appl. Math. Comput.
218
,
3451
3465
(
2011
).
187.
H.-H.
Liu
, “
A conductivity relationship for steady-state unsaturated flow processes under optimal flow conditions
,”
Vadose Zone J.
10
,
736
(
2011
).
188.
H.-H.
Liu
, “
A note on equations for steady-state optimal landscapes
,”
Geophys. Res. Lett.
38
,
L10402
, doi: (
2011
).
189.
A. F.
Miguel
, “
Natural flow systems: Acquiring their constructal morphology
,”
Int. J. Des. Nat. Ecodyn.
5
,
230
241
(
2010
).
190.
A. G.
Konings
,
X.
Feng
,
A.
Molini
,
S.
Manzoni
,
G.
Vico
, and
A.
Porporato
, “
Thermodynamics of an idealized hydrologic cycle
,”
Water Resour. Res.
48
,
W05527
(
2010
).
191.
J. D.
Phillips
, “
Emergence and pseudo-equilibrium in geomorphology
,”
Geomorphology
132
,
319
326
(
2011
).
192.
A. H.
Reis
and
A.
Bejan
, “
Constructal theory of global circulation and climate
,”
Int. J. Heat Mass Transfer
49
,
1857
1875
(
2006
).
193.
M.
Clausse
,
F.
Meunier
,
A. H.
Reis
, and
A.
Bejan
, “
Climate change, in the framework of the constructal law
,”
Int. J. Global Warming
4
,
242
260
(
2012
).
194.
A. W.
Kosner
, “
Big data not required: The benefits of a less complex model of climate change
,” Forbes, 12 October
2012
.
195.
S.
Lorente
,
A.
Bejan
,
K.
Al-Hinai
,
A. Z.
Sahin
, and
B. S.
Yilbas
, “
Constructal design of distributed energy systems: Solar power and water desalination
,”
Int. J. Heat Mass Transfer
55
,
2213
2218
(
2012
).
196.
G.
Lorenzini
and
C.
Biserni
, “
The Constructal law: From design in nature to social dynamics and wealth as physics
,”
Phys. Life Rev.
8
,
259
260
(
2011
).
197.
A. W.
Kosner
, “
There's a new law in physics and it changes everything
,” Forbes, 29 February
2012
.
198.
A. W.
Kosner
, “
‘Freedom is good for design,’ How to use Constructal Theory to liberate any flow system
,” Forbes, 18 March
2012
.
199.
A.
Bejan
and
S.
Lorente
, “
The constructal law makes biology and economics be like physics
,”
Phys. Life Rev.
8
,
261
263
(
2011
).
200.
A.
Bejan
,
S.
Lorente
,
B. S.
Yilbas
, and
A. S.
Sahin
, “
The effect of size on efficiency: Power plants and vascular designs
,”
Int. J. Heat Mass Transfer
54
,
1475
1481
(
2011
).
201.
S.
Lorente
and
A.
Bejan
, “
Global distributed energy systems
,” in
Management of Natural Resources, Sustainable Development and Ecological Hazards II
, edited by
C. A.
Brebbia
,
N.
Jovanovic
, and
E.
Tiezzi
(
WIT Press
,
Southampton
,
2010
), pp.
251
269
.
202.
A. M.
Morega
,
J. C.
Ordonez
, and
M.
Morega
, “
A constructal approach to power distribution networks design
,” in
International Conference on Renewable Energy and Power Quality, Santander, 12-14 March
(
2008
), pp.
441
442
.
203.
L.
Xia
,
S.
Lorente
, and
A.
Bejan
, “
Constructal design of distributed cooling on the landscape
,”
Int. J. Energy Res.
35
,
805
812
(
2011
).
204.
L. A. O.
Rocha
,
S.
Lorente
, and
A.
Bejan
, “
Distributed energy tapestry for heating the landscape
,”
J. Appl. Phys.
108
,
124904
(
2010
).
205.
J. P.
Meyer
, “
Constructal law in technology, thermofluid and energy systems, and in design education
,”
Phys. Life Rev.
8
,
247
248
(
2011
).
206.
A.
Bejan
, “
Two hierarchies in science: The free flow of ideas and the academy
,”
Int. J. Des. Nat. Ecodyn.
4
,
386
394
(
2009
).
207.
A.
Bejan
, “
Science and technology as evolving flow architectures
,”
Int. J. Energy Res.
33
,
112
125
(
2009
).
208.
P.
Vadasz
, See http://DrVadasz.com for personal communication.
209.
R.
Sweo
and
S.
Pate
, “
Understanding currency market dynamics through constructal theory: A managerial perspective
,”
J. Int. Manage. Stud.
5
(
1
),
75
81
(
2010
), see http://www.jimsjournal.org/10%20Robert%20Sweo.pdf.
210.
C.
Viniegra
, “
The digital governance challenge: The role of government in the digital age
,” in
Business Technologies Strategies Executive Update
(
2012
), Vol.
15
, No. 14.
211.
G.
Weinerth
, “
The constructal analysis of warfare
,”
Int. J. Des. Nat. Ecodyn.
5
,
268
276
(
2010
).
212.
A.
Bejan
and
S.
Lorente
, “
The constructal law origin of the logistics S curve
,”
J. Appl. Phys.
110
,
024901
(
2011
).
213.
L.
Combelles
,
S.
Lorente
,
R.
Anderson
, and
A.
Bejan
, “
Tree-shaped fluid flow and heat storage in a conducting solid
,”
J. Appl. Phys.
111
,
014902
(
2012
).
214.
H.
Kobayashi
,
S.
Lorente
,
R.
Anderson
, and
A.
Bejan
, “
Serpentine thermal coupling between a stream and a conducting body
,”
J. Appl. Phys.
111
,
044911
(
2012
).
215.
E.
Cetkin
,
S.
Lorente
, and
A.
Bejan
, “
The steepest S curve of spreading and collecting: Discovering the invading tree, not assuming it
,”
J. Appl. Phys.
111
,
114903
(
2012
).
216.
A.
Bejan
and
S.
Lorente
, “
The physics of spreading ideas
,”
Int. J. Heat Mass Transfer
55
,
802
807
(
2012
).
217.
O.
Ozturkoglu
,
K. R.
Gue
, and
R. D.
Meller
, “
Optimal unit-load warehouse designs for single-command operations
,”
IIE Trans.
44
,
459
475
(
2012
).
218.
C. H.
Lui
,
N. K.
Fong
,
S.
Lorente
,
A.
Bejan
, and
W. K.
Chow
, “
Constructal design for pedestrian movement in living spaces: Evacuation configurations
,”
J. Appl. Phys.
111
,
054903
(
2012
).
219.
L. C.
Kelley
and
K.
Behan
, “
Empathy & evolution: How dogs convert stress into flow
,” Psychology Today, 6 August
2012
.
220.
L. C.
Kelley
and
K.
Behan
, “
The canine mind bows to the Constructal law
,” Psychology Today, 16 October
2012
.
221.
A.
Bejan
and
S.
Lorente
, “
The constructal law and the thermodynamics of flow systems with configuration
,”
Int. J. Heat Mass Transfer
47
,
3203
3214
(
2004
).
222.
M.
Birla
,
FedEx Delivers: How the World's Leading Shipping Company Keeps Innovating and Outperforming the Competition
(
Wiley
,
Hoboken
,
2005
).
223.
G. R.
McGhee
,
Convergent Evolution: Limited Forms Most Beautiful
(
The MIT Press
,
Cambridge, MA
,
2011
).
224.
J.
Burstein
,
Spark: How Creativity Works
(
Harper
,
New York
,
2011
).
225.
V. W.
Hwang
and
G.
Horowitt
,
The Rainforest: The Secret to Building the Next Silicon Valley
(
Regenwald
,
Los Altos Hills, CA
,
2012
).
226.
E.
Dellian
, See http://www.neutonus-reformatus.com for “The language of nature is not algebra,” Neutonus Reformatus, Paper no. 40 (
2012
).
You do not currently have access to this content.