For a sharp tip emitter, due to the non-uniform emission feature and the electron beam expansion in the vacuum, it is difficult to precisely determine the average field enhancement factor βc as well as the effective emission area Seff for a single field emitter. In this paper, we conduct a numerical experiment to simulate the electron field emission from a sharp tip emitter (Lorentzian or hyperboloid shape). By collecting the emission current Itot at the finite anode area Stot, we establish the criteria in using Fowler-Nordheim plot to estimate both βc and Seff, which agree well with our initial emission condition. It is found that the values of βc and Seff depend on the emitter's properties as well as the size of the anode area Stot. In order to determine the precise value of βc, Stot must be large enough to collect all the emitted electrons from the sharp tip (e.g., Itot reaches maximum). As an example, a Lorentzian type emitter with an aspect ratio of 10 (height over width), the effective enhancement factor is about βc=33 as compared to the maximal enhancement of 35 at the apex. At similar maximal enhancement factor at the apex (=360), both types of emitters will give different average field enhancement dependent on the collecting area. The extension of this simple model to a statistical more complicated model to simulate field emission from a cathode consisting of many field emitters is also briefly discussed. This paper should be useful to analyze and characterize field emission data together with experimental measurement.

1.
R.
Gomer
,
Field Emission and Field Ionization
(
American Institute of Physics
,
New York
,
1993
).
2.
G.
Fursey
,
Field Emission in Vacuum Microelectronics
(
Kluwer Academic/Plenum Publisher
,
New York
,
2003
).
3.
H. W.
Fink
,
IBM J. Res. Dev.
30
,
460
(
1986
).
4.
Y. M.
Chang
,
M. C.
Liu
,
P. H.
Kao
,
C. M.
Lin
, and
H. Y.
Lee
,
ACS Appl. Mater. Interfaces
4
,
1411
(
2012
).
5.
F. H.
Chu
,
C. W.
Huang
,
C. L.
Hsin
,
C. W.
Wang
,
S. Y.
Yu
,
P. H.
Yeh
, and
W. W.
Wu
,
Nanoscale
4
,
1471
(
2012
).
6.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
7.
See supplementary material at http://dx.doi.org/10.1063/1.4798926 for assumptions used in the model.
8.
F.
Ducroquet
,
P.
Kropfeld
,
O.
Yaradou
, and
A.
Vanoverschelde
,
J. Vac. Sci. Technol. B
16
,
787
(
1998
).
9.
P. B.
Shah
,
B. M.
Nichols
,
M. D.
Derenge
, and
K. A.
Jones
,
J. Vac. Sci. Technol. A
22
,
1847
(
2004
).
10.
J. H.
Park
,
H. I.
Lee
,
H. S.
Tae
,
J. S.
Huh
, and
J. H.
Lee
,
IEEE Trans. Electron Devices
44
,
1018
(
1997
).
11.
A.
Baba
,
M.
Hizukuri
,
M.
Iwamoto
, and
T.
Asano
,
J. Vac. Sci. Technol. B
18
,
877
(
2000
).
12.
Y. F.
Liu
and
Y. Y.
Lau
,
J. Vac. Sci. Technol. B
14
(
3
),
2126
(
1996
).
13.
W.
Zhu
,
Vacuum Microelectronics
(
John Wiley and Sons
,
New York
,
2001
).
14.
Y. Y.
Lau
,
J. Appl. Phys.
61
,
36
(
1987
).
15.
S.
Sun
and
L. K.
Ang
,
Phys. Plasmas
19
,
033107
(
2012
).
16.
W. D.
Goodhue
,
P. M.
Nitishin
,
C. T.
Harris
,
C. O.
Bozler
,
D. D.
Rathman
,
G. D.
Johnson
, and
M. A.
Hollis
,
J. Vac. Sci. Technol. B
12
,
693
(
1994
).
17.
D.
Palmer
,
H. F.
Gray
,
J.
Mancusi
,
D.
Temple
,
C.
Ball
,
J. L.
Shaw
, and
G. E.
McGuire
,
J. Vac. Sci. Technol. B
13
,
576
(
1995
).
18.
K. L.
Jensen
,
E. G.
Zaidman
,
M. A.
Kodis
,
B.
Goplen
, and
D. N.
Smithe
,
J. Vac. Sci. Technol. B
14
,
1942
(
1996
).
19.
C. H.
Huang
and
J. C.
Chen
,
J. Cryst. Growth
229
,
184
(
2001
).
20.
X. L.
Tong
,
Y.
Qin
,
X. Y.
Guo
,
O.
Moutanabbir
,
X. Y.
Ao
,
E.
Pippel
,
L. B.
Zhang
, and
M.
Knez
,
Small
8
,
3390
(
2012
).
21.
J.
Yu
,
J.
Liu
,
M.
Breedon
,
M.
Shafiei
,
H.
Wen
,
Y. X.
Li
,
W.
Wlodarski
,
G.
Zhang
, and
K.
Kalantar-zadeh
,
J. Appl. Phys.
109
,
114316
(
2011
).
22.
S. L.
Yue
,
H. Y.
Pan
,
Z. Y.
Ning
,
J. B.
Yin
,
Z. X.
Wang
, and
G. M.
Zhang
,
Nanotechnology
22
,
115703
(
2011
).
23.
J. D.
Zuber
,
K. L.
Jensen
, and
T. E.
Sullivan
,
J. Appl. Phys.
91
,
9379
(
2002
).
24.
J.
Liang
and
G. M.
Zhang
,
ACS Appl. Mater. Interfaces
4
,
6053
(
2012
).
25.
S. Q.
Li
,
G. M.
Zhang
,
D. Z.
Guo
,
L. G.
Yu
, and
W.
Zhang
,
J. Phys. Chem. C
113
,
12759
(
2009
).
26.
J. H.
Deng
,
Y. M.
Yang
, and
R. T.
Zheng
,
Appl. Surf. Sci.
258
,
7094
(
2012
).
27.
B.
Zhao
,
L.
Zhang
, and
X. Y.
Wang
,
Carbon
50
,
2710
(
2012
).
28.
S. K.
Srivastava
,
V. D.
Vankar
, and
V.
Kumar
,
Nanoscale Res. Lett.
3
,
25
(
2008
).
29.
R.
Miller
,
Y. Y.
Lau
, and
J. H.
Booske
,
Appl. Phys. Lett.
91
,
074105
(
2007
).

Supplementary Material

You do not currently have access to this content.