The concepts of entransy and entropy are applied to the analyses of the irreversible Carnot engines based on the finite time thermodynamics. Taking the maximum output power and the maximum heat-work conversion efficiency (HWCE) as objectives, the applicability of the entransy theory and the entropy generation minimization method to the optimizations is investigated. For the entransy theory, the results show that the maximum entransy loss rate always relates to the maximum output power, while the maximum entransy loss coefficient always leads to the maximum HWCE for all the cases discussed in this paper. For the concept of entropy generation, the maximum entropy generation rate corresponds to the maximum output power when the Carnot engine works between infinite heat reservoirs, while the entropy generation number cannot be defined in this case. When the Carnot engine works between the finite heat reservoirs provided by streams, the minimum entropy generation rate corresponds to the maximum output power with prescribed heat flow capacity rates and inlet temperatures of the streams, while the minimum entropy generation number corresponds to the maximum HWCE. When the heat capacity flow rate of the hot stream is not prescribed, the entropy generation rate increases with increasing output power, while the entropy generation number decreases with increasing HWCE. When the inlet temperature of the hot stream is not prescribed, the entropy generation rate increases with increasing output power, and the entropy generation number also increases with increasing HWCE.

1.
S.
Carnot
,
Reflections on the Motive Power of Fire and on Machines Fitted to Develop that Power
(
Bachelier
,
Paris
,
1824
).
2.
W. D.
Shen
and
J. G.
Tong
,
Engineering Thermodynamics
, 4th ed. (
High Education Press
,
Beijing
,
2007
).
3.
F. L.
Curzon
and
B.
Ahlborn
,
Am. J. Phys.
43
,
22
(
1975
).
4.
L. G.
Chen
and
F. R.
Sun
,
Advances in Finite Time Thermodynamics: Analysis and Optimization
(
Nova Science Publishers,
New York
,
2004
).
5.
L. G.
Chen
,
C.
Wu
, and
F. R.
Sun
,
J Non-Equil. Thermodyn.
24
,
327
(
1999
).
6.
C.
Wu
,
L. G.
Chen
, and
J. C.
Chen
,
Recent Advances in Finite Time Thermodynamics
(
Nova Science Publishers
,
New York
,
1999
).
7.
S. J.
Xia
,
L. G.
Chen
, and
F. R.
Sun
,
J. Appl. Phys.
105
,
124905
(
2009
).
8.
D.
Ahmet
,
S. S.
Oguz
,
S.
Bahri
, and
Y.
Hasbi
,
Prog. Energy Combust. Sci.
30
,
175
(
2004
).
9.
C. Y.
Cheng
and
C. K.
Chen
,
J. Phys. D: Appl. Phys.
28
,
2451
(
1995
).
10.
P. L.
Curto-Risso
,
A.
Medina
, and
A.
Calvo Hernández
,
J. Appl. Phys.
104
,
094911
(
2008
).
11.
H. J.
Song
,
L. G.
Chen
,
J.
Li
,
F. R.
Sun
, and
C.
Wu
,
J. Appl. Phys.
100
,
124907
(
2006
).
12.
Y. Q.
Li
,
Y. L.
He
, and
W. W.
Wang
,
Renewable Energy
36
,
421
(
2011
).
13.
S. C.
Kaushik
and
S.
Kumar
,
Energy Convers. Manage.
42
,
295
(
2001
).
14.
L. G.
Chen
,
F. R.
Sun
, and
C.
Wu
,
Energy Convers. Manage.
38
,
1501
(
1997
).
15.
J. C.
Chen
,
J. Phys. D: Appl. Phys.
27
,
1144
(
1994
).
16.
L. G.
Chen
,
F. R.
Sun
, and
C.
Wu
,
J. Phys. D: Appl. Phys.
32
,
99
(
1999
).
17.
J.
Li
,
L. G.
Chen
, and
F. R.
Sun
,
Int. J. Sustainable Energy
30
,
55
(
2011
).
18.
P.
Salamon
and
A.
Nitzan
,
J. Chem. Phys.
74
,
3546
(
1981
).
19.
H. J.
Feng
,
L. G.
Chen
, and
F. R.
Sun
,
Int. J. Sustainable Energy
30
,
321
(
2011
).
20.
H. J.
Feng
,
L. G.
Chen
, and
F. R.
Sun
,
Rev. Mex. Fis.
56
,
135
(
2010
).
21.
L. G.
Chen
,
X. Q.
Zhu
,
F. R.
Sun
, and
C.
Wu
,
Appl. Energy
78
,
305
(
2004
).
22.
W. Z.
Chen
,
F. R.
Sun
,
S. M.
Cheng
, and
L. G.
Chen
,
Int. J. Energy Res.
19
,
751
(
1995
).
23.
A.
Devos
,
Am. J. Phys.
53
,
570
(
1985
).
24.
C. Y.
Cheng
and
C. K.
Chen
,
J. Phys. D: Appl. Phys.
30
,
1602
(
1997
).
25.
J.
Li
,
L. G.
Chen
, and
F. R.
Sun
,
Appl. Energy
85
,
96
(
2008
).
26.
A.
Bejan
,
Advanced Engineering Thermodynamics
, 2nd ed. (
John Wiley & Sons
,
New York
,
1997
).
27.
P.
Salamon
,
A.
Nitzan
, and
B.
Andresen
,
Phys. Rev. A
21
,
2115
(
1980
).
28.
A.
Bejan
,
J. Appl. Phys.
79
,
1191
(
1996
).
29.
A.
Myat
,
K.
Thu
, and
Y. D.
Kim
,
Appl. Therm. Eng.
31
,
2405
(
2011
).
30.
H. K.
Mistry
,
J. H.
Lienhard
, and
S. M.
Zubair
,
Int. J. Therm. Sci.
49
,
1837
(
2010
).
31.
P.
Li
,
M. Q.
Gong
, and
J. F.
Wu
,
J. Appl. Phys.
104
,
103536
(
2008
).
32.
S. A.
Klein
and
D. T.
Reindl
,
J. Energy Resour. Technol.
120
,
172
(
1998
).
33.
X. T.
Cheng
,
W. H.
Wang
, and
X. G.
Liang
,
Chin. Sci. Bull.
57
,
2934
(
2012
).
34.
Z. Y.
Guo
,
H. Y.
Zhu
, and
X. G.
Liang
,
Int. J. Heat Mass Transfer
50
,
2545
(
2007
).
35.
L. G.
Chen
,
Chin. Sci. Bull.
57
,
4404
(
2012
).
36.
X. G.
Cheng
,
Z. X.
Li
, and
Z. Y.
Guo
,
J. Eng. Thermophys.
24
,
94
(
2003
) (in Chinese).
37.
L. G.
Chen
,
S. H.
Wei
, and
F. R.
Sun
,
J. Phys. D: Appl. Phys.
41
,
195506
(
2008
).
38.
L. G.
Chen
,
S. H.
Wei
, and
F. R.
Sun
,
J. Appl. Phys.
105
,
094906
(
2009
).
39.
L. G.
Chen
,
Q. H.
Xiao
,
Z. H.
Xie
, and
F. R.
Sun
,
Int. Commun. Heat Mass Transfer
39
,
1556
(
2012
).
40.
H. J.
Feng
,
L. G.
Chen
, and
F. R.
Sun
,
Sci. China Tech. Sci.
55
,
779
(
2012
).
41.
F.
Yuan
and
Q.
Chen
,
Energy
36
,
5476
(
2011
).
42.
Q.
Chen
,
M. R.
Wang
,
N.
Pan
, and
Z. Y.
Guo
,
Energy
34
,
1199
(
2009
).
43.
J.
Wu
and
X. G.
Liang
,
Sci. China. Ser. E: Tech. Sci.
51
,
1306
(
2008
).
44.
X. T.
Cheng
and
X. G.
Liang
,
Int. J. Heat Mass Transfer
54
,
269
(
2011
).
45.
Z. Y.
Guo
,
X. B.
Liu
,
W. Q.
Tao
, and
R. K.
Shah
,
Int. J. Heat Mass Transfer
53
,
2877
(
2010
).
46.
J. F.
Guo
and
M. T.
Xu
,
Appl. Therm. Eng.
36
,
227
(
2012
).
47.
H. J.
Feng
,
L. G.
Chen
,
Z. H.
Xie
, and
F. R.
Sun
,
Sci. China Tech. Sci.
56
,
299
(
2013
).
48.
X. B.
Liu
,
J. A.
Meng
, and
Z. Y.
Guo
,
Chin. Sci. Bull.
54
,
943
(
2009
).
49.
Q.
Chen
,
J.
Wu
,
M. R.
Wang
, and
Z. Y.
Guo
,
Chin. Sci. Bull.
56
,
449
(
2011
).
50.
X. T.
Cheng
and
X. G.
Liang
,
Energy
44
,
964
(
2012
).
51.
X. T.
Cheng
,
W. H.
Wang
, and
X. G.
Liang
,
Sci. China Tech. Sci.
55
,
2847
(
2012
).
52.
B.
Zhou
,
X. T.
Cheng
, and
X. G.
Liang
,
Sci. China Tech. Sci.
56
,
228
(
2013
).
53.
L. G.
Chen
,
S. J.
Xia
, and
F. R.
Sun
,
J. Appl. Phys.
105
,
044907
(
2009
).
54.
X. T.
Cheng
and
X. G.
Liang
,
Energy
47
,
421
(
2012
).
You do not currently have access to this content.