Graphene grown by chemical vapor deposition can be used as the conductive channel in metal oxide semiconductor field effect transistors, metallic electrodes in capacitors, etc. However, substrate-induced corrugations and strain-related wrinkles formed on the graphene layer impoverish the properties of these devices by lowering the conductance and increasing their variability. Using the scanning electron microscopy, Auger electron spectroscopy, scanning tunneling microscopy, and atomic force microscopy, we investigated the morphology of as-grown and transferred graphene sheets on different substrates. We show that while the compressive strain (from the growth process) in the graphene sheet on flat substrates is minimized by generating wrinkles, and on rough substrates, it can be minimized by improving the graphene-substrate adhesion, leading to lower densities of wrinkles. This method paves the way to the design of wrinkle-free graphene based devices.

1.
G.
Prakash
,
M. A.
Capano
,
M. L.
Bolen
,
D.
Zemlyanov
, and
R. G.
Reifenberg
,
Carbon
48
(
9
),
2383
2393
(
2010
).
2.
J. M. P.
Alaboson
,
Q. H.
Wang
,
J. A.
Kellar
,
J.
Park
,
J. W.
Elam
,
M. J.
Pellin
, and
M. C.
Hersam
,
Adv. Mater.
23
,
2181
2184
(
2011
).
3.
Q. S.
Huang
,
G.
Wang
,
L. W.
Guo
,
Y. P.
Jia
,
J. J.
Lin
,
K.
Li
,
W. J.
Wang
, and
X. L.
Chen
,
Small
7
(
4
),
450
454
(
2011
).
4.
Y.
Yue
,
J.
Zhang
, and
X.
Wang
,
Small
7
(
23
),
3324
3333
(
2011
).
5.
C.
Vecchio
,
S.
Sonde
,
C.
Bongiorno
,
M.
Rambach
,
R.
Yakimova
,
V.
Raineri
, and
F.
Giannazzo
,
Nanoscale Res. Lett.
6
,
269
(
2011
).
6.
S. J.
Chae
,
F.
Günes
,
K. K.
Kim
,
G. H.
Han
,
S. M.
Kim
,
H. J.
Shin
,
S. M.
Yoon
,
J. Y.
Choi
,
M. H.
Park
,
C. W.
Yang
,
D.
Pribat
, and
Y. H.
Lee
,
Adv. Mater.
21
,
2328
2333
(
2009
).
7.
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J. S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H. R.
Kim
, and
Y. I.
Song
,
Nat. Nanotechnol.
5
,
574
578
(
2010
).
8.
G. H.
Han
,
F.
Günes
,
J. J.
Bae
,
E. S.
Kim
,
S. J.
Chae
,
H. J.
Shin
,
J. Y.
Choi
,
D.
Pribat
, and
Y. H.
Lee
,
Nano Lett.
11
,
4144
4148
(
2011
).
9.
J. W.
Suk
,
A.
Kitt
,
C. W.
Magnuson
,
Y.
Hao
,
S.
Ahmed
,
J.
An
,
A. K.
Swan
,
B. B.
Goldberg
, and
R. S.
Ruoff
,
ACS Nano
5
(
9
),
6916
6924
(
2011
).
10.
W.
Yang
,
C. L.
He
,
L. C.
Zhang
,
Y.
Wang
,
Z. W.
Shi
,
M.
Cheng
,
G.
Xie
,
D.
Wang
,
R.
Yang
,
D.
Shi
, and
G.
Zhang
,
Small
8
(
9
),
1429
1435
(
2012
).
11.
E. U.
Stützel
,
M.
Burghard
,
K.
Kern
,
F.
Travesi
,
F.
Nichele
, and
R.
Sordan
,
Small
6
(
24
),
2822
2825
(
2010
).
12.
W.
Liu
,
B. L.
Jackson
,
J.
Zhu
,
C. Q.
Miao
,
C. H.
Chung
,
Y. J.
Park
,
K.
Sun
,
J.
Woo
, and
Y. H.
Xie
,
ACS Nano
4
(
7
),
3927
3932
(
2010
).
13.
J. K.
Park
,
S. M.
Song
,
J. H.
Mun
, and
B. J.
Cho
,
Nano Lett.
11
,
5383
5386
(
2011
).
14.
Y. F.
Zhang
,
T.
Gao
,
Y. B.
Gao
,
S. B.
Xie
,
Q. Q.
Ji
,
K.
Yan
, and
H.
Peng
,
ACS Nano
5
,
4014
4022
(
2011
).
15.
C.
Mattevi
,
H.
Kim
, and
M.
Chhowalla
,
J. Mater. Chem.
21
,
3324
3334
(
2011
).
16.
N.
Liu
,
Z. H.
Pan
,
L.
Fu
,
C.
Zhang
,
B.
Dai
, and
Z. F.
Liu
,
Nano Res.
4
,
996
1004
(
2011
).
17.
Z. H.
Pan
,
N.
Liu
,
L.
Fu
, and
Z. F.
Liu
,
J. Am. Chem. Soc.
133
,
17578
17581
(
2011
).
18.
J. C.
Myer
,
A. K.
Geim
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
T. J.
Booth
, and
S.
Roth
,
Nature
446
,
60
63
(
2007
).
19.
A. S.
Barnarda
and
I. K.
Snook
,
Nanoscale
4
,
1167
1170
(
2012
).
20.
T. O.
Wehling
,
A. V.
Balatsky
,
A. M.
Tsvelik
,
M. I.
Katsnelson
, and
A. I.
Lichtenstein
,
EPL
84
,
17003
(
2008
).
21.
W. H.
Duan
,
K.
Gong
, and
Q.
Wang
,
Carbon
49
,
3107
3112
(
2011)
.
22.
H.
Mei
and
R.
Huang
,
Appl. Phys. Lett.
90
,
151902
(
2007
).
23.
T.
Li
and
Z.
Zhang
,
J. Phys. D: Appl. Phys.
43
,
075303
(
2010
).
24.
S. M.
Song
and
B. J.
Cho
,
Nanotechnology
21
,
335706
(
2010
).
25.
P.
Lauffer
,
K. V.
Emtsev
,
R.
Graupner
,
Th.
Seyller
, and
L.
Ley
,
Phys. Rev. B
77
,
155426
(
2008
).
26.
V. W.
Brar
,
Y.
Zhang
,
Y.
Yayon
,
T.
Ohta
,
J. L.
McChesney
,
A.
Bostwick
,
E.
Rotenberg
,
K.
Horn
, and
M. F.
Crommie
,
Appl. Phys. Lett.
91
,
122102
(
2007
).
You do not currently have access to this content.