Compensation effects in metal organic chemical vapour deposition grown GaN doped with magnesium are investigated with Raman spectroscopy and photoluminescence measurements. Examining the strain sensitive E2(high) mode, an increasing compressive strain is revealed for samples with Mg-concentrations lower than 7 × 1018 cm−3. For higher Mg-concentrations, this strain is monotonically reduced. This relaxation is accompanied by a sudden decrease in crystal quality. Luminescence measurements reveal a well defined near band edge luminescence with free, donor bound, and acceptor bound excitons as well as a characteristic donor acceptor pair (DAP) luminescence. Following recent results, three acceptor bound excitons and donor acceptor pairs are identified. Along with the change of the strain, a strong modification in the luminescence of the dominating acceptor bound exciton and DAP luminescence is observed. The results from Raman spectroscopy and luminescence measurements are interpreted as fingerprints of compensation effects in GaN:Mg leading to the conclusion that compensation due to defect incorporation triggered by Mg-doping already affects the crystal properties at doping levels of around 7 × 1018 cm−3. Thereby, the generation of nitrogen vacancies is introduced as the driving force for the change of the strain state and the near band edge luminescence.

1.
H.
Amano
,
M.
Kito
,
K.
Hiramatsu
, and
I.
Akasaki
,
Jpn. J. Appl. Phys.
28
(
12
),
L2112
(
1989
).
2.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys.
(
31
)(
2B
),
L139
L142
(
1992
).
3.
H.
Obloh
,
K. H.
Bachem
,
U.
Kaufmann
,
M.
Kunzer
,
M.
Maier
,
A.
Ramakrishnan
, and
P.
Schlotter
,
J. Cryst. Growth
195
(
1–4
),
270
273
(
1998
).
4.
R.
Kirste
,
R.
Collazo
,
G.
Callsen
,
M. R.
Wagner
,
T.
Kure
,
J. S.
Reparaz
,
S.
Mita
,
J.
Xie
,
A.
Rice
,
J.
Tweedie
,
Z.
Sitar
, and
A.
Hoffmann
,
J. Appl. Phys.
110
(
9
),
093503
093509
(
2011
).
5.
M.
Kuball
,
Surf. Interface Anal.
31
(
10
),
987
999
(
2001
).
6.
G.
Callsen
,
M. R.
Wagner
,
T.
Kure
,
J. S.
Reparaz
,
M.
Bügler
,
J.
Brunnmeier
,
C.
Nenstiel
,
A.
Hoffmann
,
M.
Hoffmann
,
J.
Tweedie
,
Z.
Bryan
,
S.
Aygun
,
R.
Kirste
,
R.
Collazo
, and
Z.
Sitar
,
Phys. Rev. B
86
(
7
),
075207
(
2012
).
7.
A.
Kaschner
,
H.
Siegle
,
A.
Hoffmann
,
C.
Thomsen
,
U.
Birkle
,
S.
Einfeldt
, and
D.
Hommel
,
MRS Internet J. Nitride Semicond. Res.
4S1
,
G3
57
(
1999
).
8.
L.
Eckey
,
U.
Von Gfug
,
J.
Holst
,
A.
Hoffmann
,
B.
Schineller
,
K.
Heime
,
M.
Heuken
,
O.
Schön
, and
R.
Beccard
,
J. Cryst. Growth
189–190
,
523
527
(
1998
).
9.
A. K.
Viswanath
,
E.-J.
Shin
,
J. I.
Lee
,
S.
Yu
,
D.
Kim
,
B.
Kim
,
Y.
Choi
, and
C.-H.
Hong
,
J. Appl. Phys.
83
,
2272
(
1998
).
10.
B.
Monemar
,
P. P.
Paskov
,
G.
Pozina
,
C.
Hemmingsson
,
J. P.
Bergman
,
T.
Kawashima
,
H.
Amano
,
I.
Akasaki
,
T.
Paskova
,
S.
Figge
,
D.
Hommel
, and
A.
Usui
,
Phys. Rev. Lett.
102
(
23
),
235501
(
2009
).
11.
S.
Mita
,
R.
Collazo
,
A.
Rice
,
R. F.
Dalmau
, and
Z.
Sitar
,
J. Appl. Phys.
104
(
1
),
013521
013529
(
2008
).
12.
S.
Mita
,
R.
Collazo
, and
Z.
Sitar
,
J. Cryst. Growth
311
(
10
),
3044
3048
(
2009
).
13.
H. W.
Kunert
,
D. J.
Brink
,
F. D.
Auret
,
M.
Maremane
,
L. C.
Prinsloo
,
J.
Barnas
,
B.
Beaumont
, and
P.
Gibart
,
Mater. Sci. Eng., B
102
(
1–3
),
293
297
(
2003
).
14.
H.
Harima
,
T.
Inoue
,
S.
Nakashima
,
M.
Ishida
, and
M.
Taneya
,
Appl. Phys. Lett.
75
(
10
),
1383
1385
(
1999
).
15.
S.
Fritze
,
A.
Dadgar
,
H.
Witte
,
M.
Bugler
,
A.
Rohrbeck
,
J.
Blasing
,
A.
Hoffmann
, and
A.
Krost
,
Appl. Phys. Lett.
100
(
12
),
122104
(
2012
).
16.
L.
Filippidis
,
H.
Siegle
,
A.
Hoffmann
,
C.
Thomsen
,
K.
Karch
, and
F.
Bechstedt
,
Phys. Status Solidi B
198
(
2
),
621
627
(
1996
).
17.
G.
Callsen
,
J. S.
Reparaz
,
M. R.
Wagner
,
R.
Kirste
,
C.
Nenstiel
,
A.
Hoffmann
, and
M. R.
Phillips
,
Appl. Phys. Lett.
98
(
6
),
061906
(
2011
).
18.
U.
Haboeck
,
H.
Siegle
,
A.
Hoffmann
, and
C.
Thomsen
,
Phys. Status Solidi C
0
(
6
),
1710
1731
(
2003
).
19.
P.
Perlin
,
J.
Camassel
,
W.
Knap
,
T.
Taliercio
,
J. C.
Chervin
,
T.
Suski
,
I.
Grzegory
, and
S.
Porowski
,
Appl. Phys. Lett.
67
(
17
),
2524
2526
(
1995
).
20.
R.
Kirste
,
S.
Mohn
,
M. R.
Wagner
,
J. S.
Reparaz
, and
A.
Hoffmann
,
Appl. Phys. Lett.
101
(
4
),
041904
041909
(
2012
).
21.
G.
Popovici
,
G. Y.
Xu
,
A.
Botchkarev
,
W.
Kim
,
H.
Tang
,
A.
Salvador
,
H.
Morkoc
,
R.
Strange
, and
J. O.
White
,
J. Appl. Phys.
82
(
8
),
4020
4023
(
1997
).
22.
M. A.
Reshchikov
,
G. C.
Yi
, and
B. W.
Wessels
,
Phys. Rev. B
59
(
20
),
13176
13183
(
1999
).
23.
M. A.
Reshchikov
and
H.
Morkoc
,
J. Appl. Phys.
97
(
6
),
061301
061395
(
2005
).
24.
J. L.
Lyons
,
Appl. Phys. Lett.
97
(
15
),
152108
(
2010
).
25.
J.
Neugebauer
and
C. G.
Van de Walle
,
Phys. Rev. B
50
(
11
),
8067
8070
(
1994
).
26.
C. G.
Van de Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
(
8
),
3851
3879
(
2004
).
27.
U.
Kaufmann
,
P.
Schlotter
,
H.
Obloh
,
K.
Köhler
, and
M.
Maier
,
Phys. Rev. B
62
(
16
),
10867
10872
(
2000
).
28.
C. D.
Latham
,
R.
Jones
,
S.
Öberg
,
R. M.
Nieminen
, and
P. R.
Briddon
,
Phys. Rev. B
68
(
20
),
205209
(
2003
).
You do not currently have access to this content.