Different types of reversal processes, including either uniform-rotation or domain-wall driven processes, were indentified in magnetic nano-wires of four-fold symmetry using micromagnetic simulations. Iron wires were tested for diameters ranging from 6 nm up to 20 nm, while their lengths were taken from 30 nm to 70 nm range, and for several directions of externally applied magnetic field. Physical parameters of presented low-dimensional structures enabled reversal via intermediate states, which can lead to additional stable states at remanence, contrary to instable vortexes observed in magnetic nano-rings or cylindrical nanodots.

1.
Ch.
Vogler
,
F.
Bruckner
,
M.
Fuger
,
B.
Bergmair
,
T.
Huber
,
J.
Fidler
, and
D.
Suess
,
J. Appl. Phys.
109
,
123901
(
2011
).
2.
U.
Roy
,
H.
Seinige
,
F.
Ferdousi
,
J.
Mantey
,
M.
Tsoi
, and
S. K.
Banerjee
,
J. Appl. Phys.
111
,
07C913
(
2012
).
3.
S.
Yoon
,
Y.
Jang
,
Ch.
Nam
,
S.
Lee
,
J.
Kwon
,
K.
Na
,
K.
Lee
, and
B. K.
Cho
,
J. Appl. Phys.
111
,
07E504
(
2012
).
4.
A.
Tillmanns
,
M. O.
Weber
,
T.
Blachowicz
,
L.
Pawela
, and
T.
Kammermeier
, in
Proceedings of the IV European Conference on Computational Mechanics, ECCM 2010, Palais des Congrès
, Paris, France, 16-21 May
2010
.
5.
T.
Blachowicz
,
A.
Tillmanns
,
M.
Fraune
,
R.
Ghadimi
,
B.
Beschoten
, and
G.
Güntherodt
,
Phys. Rev. B
75
,
054425
(
2007
).
6.
A.
Subramani
,
D.
Geerpuram
,
A.
Domanowski
,
V.
Baskaran
, and
V.
Metlushko
,
Physica C
404
,
241
(
2004
).
7.
J.
Wang
,
A. O.
Adeyeye
, and
N.
Singh
,
Appl. Phys. Lett.
87
,
262508
(
2005
).
8.
A.
Remhof
,
A.
Schumann
,
A.
Westphalen
,
H.
Zabel
,
N.
Mikuszeit
,
E. Y.
Vedmedenko
,
T.
Last
, and
U.
Kunze
,
Phys. Rev. B
77
,
134409
(
2008
).
9.
A.
Westphalen
,
A.
Schumann
,
A.
Remhof
,
H.
Zabel
,
M.
Karolak
,
B.
Baxevanis
,
E. Y.
Vedmedenko
,
T.
Last
,
U.
Kunze
, and
T.
Eimüller
,
Phys. Rev. B
77
,
174407
(
2008
).
10.
X. S.
Gao
,
A. O.
Adeyeye
,
S.
Goolaup
,
N.
Singh
,
W.
Jung
,
F. J.
Castaño
, and
C. A.
Ross
,
J. Appl. Phys.
101
,
09F505
(
2007
).
11.
K.
He
,
D. J.
Smith
, and
M. R.
McCartney
,
J. Appl. Phys.
107
,
09D307
(
2010
).
12.
W.
Zhang
and
S.
Haas
,
Phys. Rev. B
81
,
064433
(
2010
).
13.
S.
Yoon
,
Y.
Jang
,
K.-J.
Kim
,
K.-W.
Moon
,
J.
Kim
,
Ch.
Nam
,
S.-B.
Choe
, and
B. K.
Cho
,
J. Appl. Phys.
111
,
07B910
(
2012
).
14.
T.
Blachowicz
and
A.
Ehrmann
,
J. Appl. Phys.
110
,
073911
(
2011
).
15.
W.
Scholz
,
J.
Fidler
,
T.
Schrefl
,
D.
Suess
,
R.
Dittrich
,
H.
Forster
, and
V.
Tsiantos
,
Comput. Mater. Sci.
28
,
366
(
2003
).
16.
T. L.
Gilbert
,
IEEE Trans. Magn.
40
,
3443
(
2004
).
17.
W.
Scholtz
, Scalable Paralle Micromagnetic Solvers for Magnetic Nanostructures, Ph.D. dissertation (
2003
), p.
161
.
18.
E. F.
Kneller
and
R.
Hawig
,
IEEE Trans. Magn.
27
,
3588
(
1991
).
19.
J.
Moritz
,
G.
Vinai
,
S.
Auffret
, and
B.
Dieny
,
J. Appl. Phys.
109
,
083902
(
2011
).
20.
A. L.
Dantas
,
G. O. G.
Reboucas
, and
A. S.
Carrico
,
IEEE Trans. Magn.
46
,
2311
(
2010
).
21.
Y.
Li
,
T. X.
Wang
, and
Y. X.
Li
,
Phys. Status Solidi B
247
,
1237
(
2010
).
22.
B.
Zhang
,
W.
Wang
,
C.
Mu
,
Q.
Liu
, and
J.
Wang
,
J. Magn. Magn. Mater.
322
,
2480
(
2010
).
23.
J.
Mejía-López
,
D.
Altbir
,
P.
Landeros
,
J.
Escrig
,
A. H.
Romero
,
I. V.
Roshchin
,
C.-P.
Li
,
M. R.
Fitzsimmons
,
X.
Batlle
, and
I. K.
Schuller
,
Phys. Rev. B
81
,
184417
(
2010
).
24.
I.
Tudosa
,
J. A.
Katine
,
S.
Mangin
, and
E. E.
Fullerton
,
Appl. Phys. Lett.
96
,
212504
(
2010
).
25.
R. P.
Cowburn
,
D. K.
Koltsov
,
A. O.
Adeqeqe
,
M. E.
Welland
, and
D. M.
Tricker
,
Phys. Rev. Lett.
83
,
1042
(
1999
).
26.
J. G.
Zhu
,
Y. F.
Zheng
, and
G. A.
Prinz
,
J. Appl. Phys.
87
,
6668
(
2000
).
27.
F. Q.
Zhu
,
D. L.
Fan
,
X. C.
Zhu
,
J. G.
Zhu
,
R. C.
Cammarata
, and
C. L.
Chien
,
Adv. Mater.
16
,
2155
(
2004
).
28.
S.
Tehrani
,
B.
Engel
,
J. M.
Slaughter
,
E.
Chen
,
M.
DeHerrera
,
M.
Durlam
,
P.
Naji
,
R.
Whig
,
J.
Janesky
, and
J.
Calder
,
IEEE Trans. Magn.
36
,
2752
(
2000
).
You do not currently have access to this content.