Nanofluids—a simple product of the emerging world of nanotechnology—are suspensions of nanoparticles (nominally 1–100 nm in size) in conventional base fluids such as water, oils, or glycols. Nanofluids have seen enormous growth in popularity since they were proposed by Choi in 1995. In the year 2011 alone, there were nearly 700 research articles where the term nanofluid was used in the title, showing rapid growth from 2006 (175) and 2001 (10). The first decade of nanofluid research was primarily focused on measuring and modeling fundamental thermophysical properties of nanofluids (thermal conductivity, density, viscosity, heat transfer coefficient). Recent research, however, explores the performance of nanofluids in a wide variety of other applications. Analyzing the available body of research to date, this article presents recent trends and future possibilities for nanofluids research and suggests which applications will see the most significant improvement from employing nanofluids.

1.
E. A.
Hauser
, “
The history of colloid science
,”
J. Chem. Educ.
32
(
1
),
2
(
1955
).
2.
A.
Ghadimi
,
R.
Saidur
, and
H. S. C.
Metselaar
, “
A review of nanofluid stability properties and characterization in stationary conditions
,”
Int. J. Heat Mass Transfer
54
(
17–18
),
4051
4068
(
2011
).
3.
S.
Özerinç
,
S.
Kakaç
, and
A. G.
Yazıcıoğlu
, “
Enhanced thermal conductivity of nanofluids: A state-of-the-art review
,”
Microfluid. Nanofluid.
8
(
2
),
145
170
(
2010
).
4.
Y.-D.
Liu
,
Y.-G.
Zhou
,
M.-W.
Tong
, and
X.-S.
Zhou
, “
Experimental study of thermal conductivity and phase change performance of nanofluids PCMs
,”
Microfluid. Nanofluid.
7
(
4
),
579
584
(
2009
).
5.
H. U.
Kang
,
S. H.
Kim
, and
J. M.
Oh
, “
Estimation of thermal conductivity of nanofluid using experimental effective particle volume
,”
Exp. Heat Transfer
19
(
3
),
181
191
(
2006
).
6.
P.
Keblinski
,
R.
Prasher
, and
J.
Eapen
, “
Thermal conductance of nanofluids: Is the controversy over?
,”
J. Nanopart. Res.
10
(
7
),
1089
1097
(
2008
).
7.
Y.
Hwang
 et al, “
Stability and thermal conductivity characteristics of nanofluids
,”
Thermochim. Acta
455
(
1–2
),
70
74
(
2007
).
8.
S.
Murshed
,
K.
Leong
, and
C.
Yang
, “
Investigations of thermal conductivity and viscosity of nanofluids
,”
Int. J. Therm. Sci.
47
(
5
),
560
568
(
2008
).
9.
D.
Yoo
,
K.
Hong
, and
H.
Yang
, “
Study of thermal conductivity of nanofluids for the application of heat transfer fluids
,”
Thermochim. Acta
455
(
1–2
),
66
69
(
2007
).
10.
M.
Liu
,
M.
Lin
,
C.
Tsai
, and
C.
Wang
, “
Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method
,”
Int. J. Heat Mass Transfer
49
(
17–18
),
3028
3033
(
2006
).
11.
Y.
Hwang
 et al, “
Investigation on characteristics of thermal conductivity enhancement of nanofluids
,”
Curr. Appl. Phys.
6
(
6
),
1068
1071
(
2006
).
12.
X.
Zhang
,
H.
Gu
, and
M.
Fujii
, “
Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles
,”
Exp. Therm. Fluid Sci.
31
(
6
),
593
599
(
2007
).
13.
Y.
Hwang
,
H. S.
Park
,
J. K.
Lee
, and
W. H.
Jung
, “
Thermal conductivity and lubrication characteristics of nanofluids
,”
Curr. Appl. Phys.
6
,
e67
e71
(
2006
).
14.
X.
Zhang
,
H.
Gu
, and
M.
Fujii
, “
Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids
,”
Int. J. Thermophys.
27
(
2
),
569
580
(
2006
).
15.
K.
Kwak
and
C.
Kim
, “
Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol
,”
Rheology
17
(
2
),
35
40
(
2005
).
16.
W.
Evans
,
R.
Prasher
,
J.
Fish
,
P.
Meakin
,
P.
Phelan
, and
P.
Keblinski
, “
Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids
,”
Int. J. Heat Mass Transfera
51
(
5–6
),
1431
1438
(
2008
).
17.
S. K.
Das
,
N.
Putra
,
P.
Thiesen
, and
W.
Roetzel
, “
Temperature dependence of thermal conductivity enhancement for nanofluids
,”
J. Heat Transfer
125
(
4
),
567
(
2003
).
18.
M. J.
Pastoriza-Gallego
,
L.
Lugo
,
J. L.
Legido
, and
M. M.
Piñeiro
, “
Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids
,”
Nanoscale Res. Lett.
6
(
1
),
221
(
2011
).
19.
S. B.
White
,
A. J. -M.
Shih
, and
K. P.
Pipe
, “
Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids
,”
Nanoscale Res. Lett.
6
(
1
),
346
(
2011
).
20.
H. A.
Mintsa
,
G.
Roy
,
C. T. A. M.
Nguyen
, and
D.
Doucet
, “
New temperature dependent thermal conductivity data for water-based nanofluids
,”
Int. J. Therm. Sci.
48
(
2
),
363
371
(
2009
).
21.
S. H.
Kim
,
S. R.
Choi
, and
D.
Kim
, “
Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation
,”
J. Heat Transfer
129
(
3
),
298
(
2007
).
22.
X.-j.
Wang
,
X.
Li
, and
S.
Yang
, “
Influence of pH and SDBS on the stability and thermal conductivity of nanofluids
,”
Energy Fuels
23
,
2684
2689
(
2009
).
23.
R. S.
Vajjha
and
D. K.
Das
, “
Experimental determination of thermal conductivity of three nanofluids and development of new correlations
,”
Int. J. Heat Mass Transfer
52
(
21–22
),
4675
4682
(
2009
).
24.
T.-K.
Hong
,
H.-S.
Yang
, and
C. J.
Choi
, “
Study of the enhanced thermal conductivity of Fe nanofluids
,”
J. Appl. Phys.
97
(
6
),
064311
(
2005
).
25.
C.
Kleinstreuer
and
Y.
Feng
, “
Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review
,”
Nanoscale Res. Lett.
6
(
1
),
229
(
2011
).
26.
E.
Timofeeva
 et al, “
Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory
,”
Phys. Rev. E
76
(
6
),
061203
(
2007
).
27.
K. S.
Hong
,
T.-K.
Hong
, and
H.-S.
Yang
, “
Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles
,”
Appl. Phys. Lett.
88
(
3
),
031901
(
2006
).
28.
W.
Yu
,
H.
Xie
,
L.
Chen
, and
Y.
Li
, “
Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid
,”
Thermochim. Acta
491
(
1–2
),
92
96
(
2009
).
29.
H. E.
Patel
,
S. K.
Das
,
T.
Sundararajan
,
A.
Sreekumaran Nair
,
B.
George
, and
T.
Pradeep
, “
Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects
,”
Appl. Phys. Lett.
83
(
14
),
2931
(
2003
).
30.
W.
Yu
,
D. M.
France
,
J. L.
Routbort
, and
S. U. S.
Choi
, “
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
,”
Heat Transfer Eng.
29
(
5
),
432
460
(
2008
).
31.
J. A.
Eastman
,
S. U. S.
Choi
,
S.
Li
,
W.
Yu
, and
L. J.
Thompson
, “
Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles
,”
Appl. Phys. Lett.
78
(
6
),
718
(
2001
).
32.
J.
Lee
 et al, “
Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles
,”
Int. J. Heat Mass Transfer
51
(
11–12
),
2651
2656
(
2008
).
33.
H.
Zhu
,
C.
Zhang
,
S.
Liu
,
Y.
Tang
, and
Y.
Yin
, “
Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids
,”
Appl. Phys. Lett.
89
(
2
),
023123
(
2006
).
34.
M.-S.
Liu
,
M. C. -C.
Lin
,
I.-T.
Huang
, and
C.-C.
Wang
, “
Enhancement of thermal conductivity with CuO for nanofluids
,”
Chem. Eng. Technol.
29
(
1
),
72
77
(
2006
).
35.
S. M. S.
Murshed
,
K. C.
Leong
, and
C.
Yang
, “
A combined model for the effective thermal conductivity of nanofluids
,”
Appl. Therm. Eng.
29
(
11–12
),
2477
2483
(
2009
).
36.
B.
Yang
and
Z. H.
Han
, “
Temperature-dependent thermal conductivity of nanorod-based nanofluids
,”
Appl. Phys. Lett.
89
,
083111
(
2006
).
37.
J.
Buongiorno
 et al, “
A benchmark study on the thermal conductivity of nanofluids
,”
J. Appl. Phys.
106
(
9
),
094312
(
2009
).
38.
H.
Xie
,
H.
Lee
,
W.
Youn
, and
M.
Choi
, “
Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities
,”
J. Appl. Phys.
94
(
8
),
4967
(
2003
).
39.
R.
Prasher
,
W.
Evans
,
P.
Meakin
,
J.
Fish
,
P.
Phelan
, and
P.
Keblinski
, “
Effect of aggregation on thermal conduction in colloidal nanofluids
,”
Appl. Phys. Lett.
89
(
14
),
143119
(
2006
).
40.
S. P.
Jang
and
S. U. S.
Choi
, “
Role of Brownian motion in the enhanced thermal conductivity of nanofluids
,”
Appl. Phys. Lett.
84
(
21
),
4316
(
2004
).
41.
C. H.
Li
and
G. P.
Peterson
, “
The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids
,”
J. Appl. Phys.
101
,
044312
1
(
2007
).
42.
J.
Eapen
 et al, “
Mean-field versus microconvection effects in nanofluid thermal conduction
,”
Phys. Rev. Lett.
99
(
9
),
095901
(
2007
).
43.
J.
Wensel
 et al, “
Enhanced thermal conductivity by aggregation in heat transfer nanofluids containing metal oxide nanoparticles and carbon nanotubes
,”
Appl. Phys. Lett.
92
(
2
),
023110
(
2008
).
44.
B.
Wright
 et al, “
Magnetic field enhanced thermal conductivity in heat transfer nanofluids containing Ni coated single wall carbon nanotubes
,”
Appl. Phys. Lett.
91
(
17
),
173116
(
2007
).
45.
D. H.
Kumar
,
H. E.
Patel
,
V. R. R.
Kumar
,
T.
Sundararajan
,
T.
Pradeep
, and
S. K.
Das
, “
Model for heat conduction in nanofluids
,”
Phys. Rev. Lett.
93
(
14
),
144301
(
2004
).
46.
R.
Prasher
,
P.
Bhattacharya
, and
P.
Phelan
, “
Thermal conductivity of nanoscale colloidal solutions (Nanofluids)
,”
Phys. Rev. Lett.
94
(
2
),
025901
(
2005
).
47.
J.
Lee
,
P. E.
Gharagozloo
,
B.
Kolade
,
J. K.
Eaton
, and
K. E.
Goodson
, “
Nanofluid convection in microtubes
,”
J. Heat Transfer
132
(
9
),
092401
(
2010
).
48.
W. Y.
Lai
,
S.
Vinod
,
P. E.
Phelan
, and
R.
Prasher
, “
Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube
,”
J. Heat Transfer
131
(
11
),
112401
(
2009
).
49.
S.
Zeinaliheris
,
S.
Etemad
, and
M.
Nasresfahany
, “
Experimental investigation of oxide nanofluids laminar flow convective heat transfer
,”
Int. Commun. Heat Mass Transfer
33
(
4
),
529
535
(
2006
).
50.
D.
Wen
and
Y.
Ding
, “
Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions
,”
Int. J. Heat Mass Transfer
47
(
24
),
5181
5188
(
2004
).
51.
S. Z.
Heris
,
M. N.
Esfahany
, and
S. G.
Etemad
, “
Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube
,”
Int. J. Heat Fluid Flow
28
(
2
),
203
210
(
2007
).
52.
W.
Williams
,
J.
Buongiorno
, and
L.-W.
Hu
, “
Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes
,”
J. Heat Transfer
130
(
4
),
042412
(
2008
).
53.
W.
Daungthongsuk
and
S.
Wongwises
, “
A critical review of convective heat transfer of nanofluids
,”
Renewable Sustainable Energy Rev.
11
(
5
),
797
817
(
2007
).
54.
J.
Jung
,
H.
Oh
, and
H.
Kwak
, “
Forced convective heat transfer of nanofluids in microchannels
,”
Int. J. Heat Mass Transfer
52
(
1–2
),
466
472
(
2009
).
55.
J.
Buongiorno
, “
Convective transport in nanofluids
,”
J. Heat Transfer
128
(
3
),
240
(
2006
).
56.
T. L.
Bergman
, “
Effect of reduced specific heats of nanofluids on single phase, laminar internal forced convection
,”
Int. J. Heat Mass Transfer
52
(
5–6
),
1240
1244
(
2009
).
57.
D.
Kim
 et al, “
Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions
,”
Curr. Appl. Phys.
9
(
2
),
e119
e123
(
2009
).
58.
J.
Sarkar
, “
A critical review on convective heat transfer correlations of nanofluids
,”
Renewable Sustainable Energy Rev.
15
(
6
),
3271
3277
(
2011
).
59.
S. M. S.
Murshed
,
C. A.
Nieto de Castro
,
M. J. V.
Lourenço
,
M. L. M.
Lopes
, and
F. J. V.
Santos
, “
A review of boiling and convective heat transfer with nanofluids
,”
Renewable Sustainable Energy Rev.
15
(
5
),
2342
2354
(
2011
).
60.
W.-Y.
Lai
,
Experiments on Laminar Convective Heat Transfer with Gamma-Al2O3 Nanofluids
(
Arizona State University
,
2010
).
61.
D.
Vollath
, “
Plasma synthesis of nanoparticles
,”
Kona
1
(
25
),
39
55
(
2007
).
62.
S.
Senara
,
Synthesis and Characterization of Nanofluids for Cooling Applications
(
University of the Western Cape
,
South Africa
,
2007
).
63.
T.
Phuoc
,
Y.
Soong
, and
M.
Chyu
, “
Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids
,”
Opt. Lasers Eng.
45
(
12
),
1099
1106
(
2007
).
64.
Z. H.
Han
,
F. Y.
Cao
, and
B.
Yang
, “
Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids
,”
Appl. Phys. Lett.
92
(
24
),
243104
(
2008
).
65.
J.
Tavares
and
S.
Coulombe
, “
Dual plasma synthesis and characterization of a stable copper–ethylene glycol nanofluid
,”
Powder Technol.
210
(
2
),
132
142
(
2011
).
66.
X.
Chen
and
S. S.
Mao
, “
Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications
,”
Chem. Rev.
107
(
7
),
2891
2959
(
2007
).
67.
C.-H.
Lo
,
T.-T.
Tsung
, and
H.-M.
Lin
, “
Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS)
,”
J. Alloys Compd.
434–435
,
659
662
(
2007
).
68.
X.
Fang
,
Y.
Xuan
, and
Q.
Li
, “
Experimental investigation on enhanced mass transfer in nanofluids
,”
Appl. Phys. Lett.
95
(
20
),
203108
(
2009
).
69.
J.
Veilleux
and
S.
Coulombe
, “
A dispersion model of enhanced mass diffusion in nanofluids
,”
Chem. Eng. Sci.
66
(
11
),
2377
2384
(
2011
).
70.
J.
Veilleux
and
S.
Coulombe
, “
A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids
,”
J. Appl. Phys.
108
(
10
),
104316
(
2010
).
71.
E.
Nagy
,
T.
Feczko
, and
B.
Koroknai
, “
Enhancement of oxygen mass transfer rate in the presence of nanosized particles
,”
Chem. Eng. Sci.
62
(
24
),
7391
7398
(
2007
).
72.
S.
Komati
and
A. K.
Suresh
, “
Anomalous enhancement of interphase transport rates by nanoparticles: Effect of magnetic iron oxide on gas-liquid mass transfer
,”
Ind. Eng. Chem. Res.
49
(
1
),
390
405
(
2010
).
73.
M. A.
Kedzierski
, “
Effect of CuO nanoparticle concentration on R134a/lubricant pool-boiling heat transfer
,”
J. Heat Transfer
131
(
4
),
043205
(
2009
).
74.
G.
Ding
,
H.
Peng
,
W.
Jiang
, and
Y.
Gao
, “
The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant–oil mixture
,”
Int. J. Refrig.
32
(
1
),
114
123
(
2009
).
75.
H.
Peng
,
G.
Ding
,
W.
Jiang
,
H.
Hu
, and
Y.
Gao
, “
Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube
,”
Int. J. Refrig.
32
(
6
),
1259
1270
(
2009
).
76.
K.
Park
and
D.
Jung
, “
Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning
,”
Energy Build.
39
(
9
),
1061
1064
(
2007
).
77.
B. H.
Truong
,
Determination of Pool Boiling Critical Heat Flux Enhancement in Nanofluids
(
ASME
,
2007
).
78.
D.
Wen
,
G.
Lin
,
S.
Vafaei
, and
K.
Zhang
, “
Review of nanofluids for heat transfer applications
,”
Particuology
7
(
2
),
141
150
(
2009
).
79.
R. A.
Taylor
and
P. E.
Phelan
, “
Pool boiling of nanofluids: Comprehensive review of existing data and limited new data
,”
Int. J. Heat Mass Transfer
52
(
23–24
),
5339
5347
(
2009
).
80.
G. H.
Chan
,
J.
Zhao
,
E. M.
Hicks
,
G. C.
Schatz
, and
R. P.
Van Duyne
, “
Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography
,”
Nano Letters
7
(
7
),
1947
1952
(
2007
).
81.
N.
Piatkowski
,
C.
Wieckert
, and
A.
Steinfeld
, “
Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks
,”
Fuel Process. Technol.
90
(
3
),
360
366
(
2009
).
82.
X.
Huang
,
P. K.
Jain
,
I. H.
El-Sayed
, and
M.
a El-Sayed
, “
Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles
,”
Photochem. Photobiol.
82
(
2
),
412
417
(
2006
).
83.
G. E.
Shaw
, “
Inversion of optical scattering and spectral extinction measurements to recover aerosol size spectra
,”
Appl. Opt.
18
(
7
),
988
993
(
1979
).
84.
R. A.
Taylor
,
P. E.
Phelan
,
R. J.
Adrian
, and
R. S.
Prasher
, “
Experimental results for light-induced boiling in water-based graphite nanoparticle suspensions
,” in
Proceedings of the ASME 2009 Summer Heat Transfer Conference
(
2009
), pp.
1
9
.
85.
T. P.
Otanicar
,
P. E.
Phelan
,
R. A.
Taylor
, and
H.
Tyagi
, “
Spatially varying extinction coefficient for direct absorption solar thermal collector optimization
,”
J. Sol. Energy Eng.
133
(
2
),
024501
(
2011
).
86.
D.
Peer
,
J. M.
Karp
,
S.
Hong
,
O. C.
Farokhzad
,
R.
Margalit
, and
R.
Langer
, “
Nanocarriers as an emerging platform for cancer therapy
,”
Nat. Nanotechnol.
2
(
12
),
751
760
(
2007
).
87.
R. A.
Taylor
 et al, “
Applicability of nanofluids in high flux solar collectors
,”
J. Renewable Sustainable Energy
3
(
2
),
023104
(
2011
).
88.
R. A.
Taylor
,
P. E.
Phelan
,
T. P.
Otanicar
,
R.
Adrian
, and
R.
Prasher
, “
Nanofluid optical property characterization: Towards efficient direct absorption solar collectors
,”
Nanoscale Res. Lett.
6
,
225
(
2011
).
89.
S.
Zou
,
G. C.
Schatz
, and
I.
Introduction
, “
Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays
,”
J. Chem. Phys.
121
(
24
),
12606
12612
(
2004
).
90.
N. K.
Grady
,
N. J.
Halas
, and
P.
Nordlander
, “
Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles
,”
Chem. Phys. Lett.
399
(
1–3
),
167
171
(
2004
).
91.
N. G.
Khlebtsov
,
L. A.
Trachuk
, and
A. G.
Mel'nikov
, “
The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium
,”
Opt. Spectrosc.
98
(
1
),
77
83
(
2005
).
92.
S. L.
Westcott
,
J. B.
Jackson
,
C.
Radloff
, and
N. J.
Halas
, “
Relative contributions to the plasmon line shape of metal nanoshells
,”
Phys. Rev. B
66
(
15
),
155431
(
2002
).
93.
G. D.
Dice
,
S.
Mujumdar
, and
A. Y.
Elezzabi
, “
Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser
,”
Appl. Phys. Lett.
86
(
13
),
131105
(
2005
).
94.
A. M.
Schwartzberg
and
J. Z.
Zhang
, “
Novel optical properties and emerging applications of metal nanostructures
,”
J. Phys. Chem. C
112
(
28
),
10323
10337
(
2008
).
95.
G.
Garcia
 et al, “
Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals
,”
Nano Lett.
11
(
10
),
4415
4420
(
2011
).
96.
E. K.
Payne
,
K. L.
Shuford
,
S.
Park
,
G. C.
Schatz
, and
C. A.
Mirkin
, “
Multipole plasmon resonances in gold nanorods
,”
J. Phys. Chem. B
110
(
5
),
2150
2154
(
2006
).
97.
S.
Lal
,
S.
Link
, and
N. J.
Halas
, “
Nano-optics from sensing to waveguiding
,”
Nature Photon.
1
(
11
),
641
648
(
2007
).
98.
A. N.
Shipway
,
E.
Katz
, and
I.
Willner
, “
Nanoparticle arrays on surfaces for electronic, optical, and sensor applications
,”
ChemPhysChem
1
(
1
),
18
52
(
2000
).
99.
G. L.
Liu
,
J.
Kim
,
Y.
Lu
, and
L. P.
Lee
, “
Optofluidic control using photothermal nanoparticles
,”
Nature Mater.
5
(
1
),
27
32
(
2006
).
100.
P. M.
Tessier
,
O. D.
Velev
,
A. T.
Kalambur
,
J. F.
Rabolt
,
A. M.
Lenhoff
, and
E. W.
Kaler
, “
Assembly of gold nanostructured films templated by colloidal crystals and use in surface-enhanced Raman spectroscopy
,”
J. Am. Chem. Soc.
122
(
39
),
9554
9555
(
2000
).
101.
L.
Shi
,
J.
Shan
,
Y.
Ju
,
P.
Aikens
, and
R. K.
Prud'homme
, “
Nanoparticles as delivery vehicles for sunscreen agents
,”
Colloids Surf., A
396
,
122
129
(
2011
).
102.
A. P. R.
Mary
 et al, “
Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles
,”
Nanotechnology
22
(
37
),
375702
(
2011
).
103.
T.
Roques-Carmes
,
F.
Aldeek
,
L.
Balan
,
S.
Corbel
, and
R.
Schneider
, “
Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting
,”
Colloids Surf., A
377
(
1–3
),
269
277
(
2011
).
104.
J. N.
Solanki
and
Z. V. P.
Murthy
, “
Preparation of silver nanofluids with high electrical conductivity
,”
J. Dispersion Sci. Technol.
32
(
5
),
724
(
2011
).
105.
J.-C.
Lee
,
H.-S.
Seo
, and
Y.-J.
Kim
, “
Experimental study on the dielectric breakdown performance with magnetic field and concentrations of magnetic nanofluids
,”
Int. Commun. Heat Mass Transfer
10
,
7
(
2011
).
106.
H.
Konakanchi
,
R.
Vajjha
,
D.
Misra
, and
D.
Das
, “
Electrical conductivity measurements of nanofluids and development of new correlations
,”
J. Nanosci. Nanotechnol.
11
(
8
),
6788
6795
(
2011
).
107.
N.
JHA
,
Synthesis of Carbon Based Nanostructures and Their Applications in Direct Methanol Fuel Cell, Nanofluids and Biosensors
(
Indian Institute of Technology
,
Chennai
,
2009
).
108.
X.
Shi
,
X.
Jiang
,
L.
Lu
,
X.
Yang
, and
X.
Wang
, “
Structure and catalytic activity of nanodiamond/Cu nanocomposites
,”
Mater. Lett.
62
(
8–9
),
1238
1241
(
2008
).
109.
R.
Kumar
and
D.
Milanova
, “
Effect of surface tension on nanotube nanofluids
,”
Appl. Phys. Lett.
94
(
7
),
073107
(
2009
).
110.
B.
Xu
,
Y.
Qiao
,
Y.
Li
,
Q.
Zhou
, and
X.
Chen
, “
An electroactuation system based on nanofluids
,”
Appl. Phys. Lett.
98
(
22
),
221909
(
2011
).
111.
D.
Orejon
,
K.
Sefiane
, and
M. E. R.
Shanahan
, “
Stick-slip of evaporating droplets: Substrate hydrophobicity and nanoparticle concentration
,”
Langmuir
27
(
21
),
12834
12843
(
2011
).
112.
M. E. R.
Shanahan
,
K.
Sefiane
, and
J. R.
Moffat
, “
Dependence of volatile droplet lifetime on the hydrophobicity of the substrate
,”
Langmuir
27
(
8
),
4572
4577
(
2011
).
113.
M. R.
Mitchell
,
R. E.
Link
,
M.-J.
Kao
,
C.-C.
Ting
,
B.-F.
Lin
, and
T.-T.
Tsung
, “
Aqueous aluminum nanofluid combustion in diesel fuel
,”
J. Test. Eval.
36
(
2
),
100579
(
2008
).
114.
A.
Bahmanyar
,
N.
Khoobi
,
M. R.
Mozdianfard
, and
H.
Bahmanyar
, “
The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column
,”
Chem. Eng. Process.
50
(
11–12
),
1198
1206
(
2011
).
115.
X.
Fan
,
H.
Chen
,
Y.
Ding
,
P. K.
Plucinski
, and
A. A.
Lapkin
, “
Potential of ‘nanofluids' to further intensify microreactors
,”
Green Chem.
10
(
6
),
670
(
2008
).
116.
T.
Sharma
,
A.
Mohanareddy
,
T.
Chandra
, and
S.
Ramaprabhu
, “
Development of carbon nanotubes and nanofluids based microbial fuel cell
,”
Int. J. Hydrogen Energy
33
(
22
),
6749
6754
(
2008
).
117.
X. B.
Wang
,
Z. M.
Liu
,
P. A.
Hu
,
Y. Q.
Liu
,
B. X.
Han
, and
D. B.
Zhu
, “
Nanofluids in carbon nanotubes using supercritical CO2: A first step towards a nanochemical reaction
,”
Appl. Phys. A
80
(
3
),
637
639
(
2003
).
118.
C.-C.
Yang
,
Y.-H.
Yu
,
B.
van der Linden
,
J. C. S.
Wu
, and
G.
Mul
, “
Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction?
,”
J. Am. Chem. Soc.
132
(
24
),
8398
8406
(
2010
).
119.
K.
Kočí
,
L.
Obalová
, and
Z.
Lacný
, “
Photocatalytic reduction of CO2 over TiO2 based catalysts
,”
Chem. Pap.
62
(
1
),
1
9
(
2008
).
120.
C.-X.
Zhao
,
L.
He
,
S. Z.
Qiao
, and
A. P. J.
Middelberg
, “
Nanoparticle synthesis in microreactors
,”
Chem. Eng. Sci.
66
(
7
),
1463
1479
(
2011
).
121.
S. U. S.
Choi
and
J. A.
Eastman
,
Enhancing Thermal Conductivity of Fluids with Nanoparticles
(Argonne, IL,
1995
).
122.
S. K.
Das
,
S. U. S.
Choi
, and
H. E.
Patel
, “
Heat transfer in nanofluids—A review
,”
Heat Transfer Eng.
27
,
3
19
(
2006
).
123.
G.
Schmid
,
Clusters and Colloids: From Theory to Applications
(
John Wiley and Sons
,
2008
), p.
570
.
124.
M. J.
Kao
,
C. H.
Lo
,
T. T.
Tsung
,
Y. Y.
Wu
,
C. S.
Jwo
, and
H. M.
Lin
, “
Copper-oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system
,”
J. Alloys Compd.
434–435
,
672
674
(
2007
).
125.
N.
Hordy
,
Direct Growth of Carbon Nanotubes From Stainless Steel Grids and Plasma Functionalization for Polyvinyl Alcohol Composite Production
(
McGill University
,
2011
).
126.
K.
Kaneda
,
T.
Mitsudome
,
T.
Mizugaki
, and
K.
Jitsukawa
, “
Development of heterogeneous Olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite
,”
Molecules
15
(
12
),
8988
9007
(
2010
).
127.
N.
Zheng
and
G. D.
Stucky
, “
A general synthetic strategy for oxide-supported metal nanoparticle catalysts
,”
J. Am. Chem. Soc.
128
(
44
),
14278
14280
(
2006
).
128.
M.
Grzelczak
,
J.
Pérez-Juste
,
P.
Mulvaney
, and
L. M.
Liz-Marzán
, “
Shape control in gold nanoparticle synthesis
,”
Chem. Soc. Rev.
37
(
9
),
1783
1791
(
2008
).
129.
T. C.
Wang
,
M. F.
Rubner
, and
R. E.
Cohen
, “
Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size
,”
Langmuir
18
(
8
),
3370
3375
(
2002
).
130.
K.-S.
Kim
,
D.
Demberelnyamba
, and
H.
Lee
, “
Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids
,”
Langmuir
20
(
3
),
556
560
(
2004
).
131.
K. R.
Gopidas
,
J. K.
Whitesell
, and
M. A.
Fox
, “
Synthesis, characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer
,”
Nano Lett.
3
(
12
),
1757
1760
(
2003
).
132.
B.
Zhao
and
Z.
Nan
, “
Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route
,”
Nanoscale Res. Lett.
6
(
1
),
230
(
2011
).
133.
M. A.
Nash
,
J. J.
Lai
,
A. S.
Hoffman
,
P.
Yager
, and
P. S.
Stayton
, “
‘Smart’ diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis
,”
Nano Lett.
10
(
1
),
85
91
(
2010
).
134.
H. Y.
Koo
,
S. T.
Chang
,
W. S.
Choi
,
J.-H.
Park
,
D.-Y.
Kim
, and
O. D.
Velev
, “
Emulsion-based synthesis of reversibly swellable, magnetic nanoparticle-embedded polymer microcapsules
,”
Chem. Mater.
18
(
14
),
3308
3313
(
2006
).
135.
C.
Pascal
,
J. L.
Pascal
,
F.
Favier
,
M. L.
Elidrissi Moubtassim
, and
C.
Payen
, “
Electrochemical synthesis for the control of γ-Fe2O3 nanoparticle size. Morphology, microstructure, and magnetic behavior
,”
Chem. Mater.
11
(
1
),
141
147
(
1999
).
136.
H.
Nakamura
,
Y.
Yamaguchi
,
M.
Miyazaki
,
H.
Maeda
,
M.
Uehara
, and
P.
Mulvaney
, “
Preparation of CdSe nanocrystals in a micro-flow-reactor
,”
Chem. Commun.
23
,
2844
2845
(
2002
).
137.
J.
Li
and
J. Z.
Zhang
, “
Optical properties and applications of hybrid semiconductor nanomaterials
,”
Coord. Chem. Rev.
253
(
23–24
),
3015
3041
(
2009
).
138.
Z.
Liang
,
A.
Susha
, and
F.
Caruso
, “
Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof
,”
Chem. Mater.
15
(
16
),
3176
3183
(
2003
).
139.
M.
Zhang
,
M.
Drechsler
, and
A. H. E.
Müller
, “
Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes
,”
Chem. Mater.
16
(
3
),
537
543
(
2004
).
140.
L.
Lu
 et al, “
Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate
,”
J. Mater. Chem.
14
(
6
),
1005
(
2004
).
141.
A.
Abou-Hassan
,
R.
Bazzi
, and
V.
Cabuil
, “
Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles
,”
Angew. Chem., Int. Ed. Engl.
48
(
39
),
7180
7183
(
2009
).
142.
J. M.
Pringle
,
O.
Winther-Jensen
,
C.
Lynam
,
G. G.
Wallace
,
M.
Forsyth
, and
D. R.
MacFarlane
, “
One step synthesis of conducting polymer–noble metal nanoparticle composites using an ionic liquid
,”
Adv. Funct. Mater.
18
(
14
),
2031
2040
(
2008
).
143.
H.-t.
Zhu
,
Y.-s.
Lin
, and
Y.-s.
Yin
, “
A novel one-step chemical method for preparation of copper nanofluids
,”
J. Colloid Interface Sci.
277
(
1
),
100
103
(
2004
).
144.
M.
Sanchez-Dominguez
,
M.
Boutonnet
, and
C.
Solans
, “
A novel approach to metal and metal oxide nanoparticle synthesis: The oil-in-water microemulsion reaction method
,”
J. Nanoparticle Res.
11
(
7
),
1823
1829
(
2009
).
145.
I.
Djerdj
,
D.
Arčon
,
Z.
Jagličić
, and
M.
Niederberger
, “
Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case study for the preparation of transition metal-doped oxide nanoparticles
,”
J. Solid State Chem.
181
(
7
),
1571
1581
(
2008
).
146.
V.
Polshettiwar
,
B.
Baruwati
, and
R. S.
Varma
, “
Self-assembly of metal oxides into synthesis and application in catalysis
,”
ACS Nano
3
(
3
),
728
736
(
2009
).
147.
M.
Niederberger
, “
Nonaqueous sol-gel routes to metal oxide nanoparticles
,”
Acc. Chem. Res.
40
(
9
),
793
800
(
2007
).
148.
E.
Rondeau
and
J. J.
Cooper-White
, “
Biopolymer microparticle and nanoparticle formation within a microfluidic device
,”
Langmuir
24
(
13
),
6937
6945
(
2008
).
149.
T.
He
,
D. J.
Adams
,
M. F.
Butler
,
A. I.
Cooper
, and
S. P.
Rannard
, “
Polymer nanoparticles: Shape-directed monomer-to-particle synthesis
,”
J. Am. Chem. Soc.
131
(
17
),
1495
1501
(
2009
).
150.
R.
Karnik
 et al, “
Microfluidic platform for controlled synthesis of polymeric nanoparticles
,”
Nano Lett.
8
(
9
),
2906
2912
(
2008
).
151.
V.
Trisaksri
and
S.
Wongwises
, “
Critical review of heat transfer characteristics of nanofluids
,”
Renewable Sustainable Energy Rev.
11
(
3
),
512
523
(
2007
).
152.
S.
Murshed
,
K.
Leong
, and
C.
Yang
, “
Thermophysical and electrokinetic properties of nanofluids—A critical review
,”
Appl. Therm. Eng.
28
(
17–18
),
2109
2125
(
2008
).
153.
S.
Thomas
and
C. B. P.
Sobhan
, “
A review of experimental investigations on thermal phenomena in nanofluids
,”
Nanoscale Res. Lett.
6
(
1
),
377
(
2011
).
154.
K. Y.
Leong
,
R.
Saidur
,
S. N.
Kazi
, and
A. H.
Mamun
, “
Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)
,”
Appl. Therm. Eng.
30
(
17–18
),
2685
2692
(
2010
).
155.
S.-Q.
Zhou
and
R.
Ni
, “
Measurement of the specific heat capacity of water-based Al2O3 nanofluid
,”
Appl. Phys. Lett.
92
(
9
),
093123
(
2008
).
156.
R. S.
Vajjha
and
D. K.
Das
, “
Specific heat measurement of three nanofluids and development of new correlations
,”
J. Heat Transfer
131
(
7
),
071601
(
2009
).
157.
D.
Shin
and
D.
Banerjee
, “
Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications
,”
Int. J. Heat Mass Transfer
54
(
5–6
),
1064
1070
(
2011
).
158.
H.
Masuda
,
A.
Ebata
,
K.
Teramae
, and
N.
Hishinuma
, “
Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of y-A12O3, SiO2, and TiO2 ultra-fine particles)
,”
Netsu Bussei (Japan)
7
(
4
),
227
233
(
1993
).
159.
P. K.
Senapati
,
B. K.
Mishra
, and
A.
Parida
, “
Modeling of viscosity for power plant ash slurry at higher concentrations: Effect of solids volume fraction, particle size, and hydrodynamic interactions
,”
Powder Technol.
197
(
1–2
),
1
8
(
2010
).
160.
R.
Prasher
,
D.
Song
,
J.
Wang
, and
P.
Phelan
, “
Measurements of nanofluid viscosity and its implications for thermal applications
,”
Appl. Phys. Lett.
89
(
13
),
133108
(
2006
).
161.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley-VCH
,
Weinheim
,
1998
), p.
544
.
162.
H. C.
van de Hulst
,
Light Scattering by Small Particles (Structure of Matter Series)
(Dover,
1981
), p.
470
.
163.
M. F.
Modest
,
Radiative Heat Transfer
, 2nd ed. (
Academic
,
2003
), p.
860
.
164.
U.
Kreibig
and
M.
Vollmer
,
Optical Properties of Metal Clusters
,
Springer Series in Materials Science
(
Springer
,
2010
), p.
552
.
165.
M.
Abdelrahman
,
P.
Fumeaux
, and
P.
Suter
, “
Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation
,”
Sol. Energy
22
(
1
),
45
48
(
1979
).
166.
A. J.
Hunt
, “
Small particle heat exchangers
,” Lawrence Berkeley Laboratory Paper LBL-7841 (
1978
).
167.
J.
Karni
,
A.
Kribus
,
R.
Rubin
, and
P.
Doron
, “
The ‘Porcupine’: A novel high-flux absorber for volumetric solar receivers
,”
J. Sol. Energy Eng.
120
(
2
),
85
(
1998
).
168.
S.
Kumar
and
C. L.
Tien
, “
Dependent absorption and extinction of radiation by small particles
,”
Trans. ASME J. Heat Transfer
112
(
1
),
178
(
1990
).
169.
C. L.
Tien
, “
Thermal radiation in packed and fluidized beds
,”
Trans. ASME
110
,
1230
1242
(
1988
).
170.
R. S.
Prasher
and
P. E.
Phelan
, “
Modeling of radiative and optical behavior of nanofluids based on multiple and dependent scattering theories
,” in
Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition
(ASME,
2005
), pp.
739
743
.
171.
Z.
Liu
,
J.
Xiong
, and
R.
Bao
, “
Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface
,”
Int. J. Multiphase Flow
33
(
12
),
1284
1295
(
2007
).
172.
M. Q.
Shuai
,
Z. Q.
Chen
,
Q.
Li
,
Y.
Xuan
, and
M. H.
Shi
, “
Study on pool boiling heat transfer of nano-particle suspensions on plate surface
,”
J. Enhanced Heat Transfer
14
(
3
),
223
231
(
2007
).
173.
J.
Tu
,
N.
Dinh
, and
T.
Theofanous
, “
An experimental study of nanofluid boiling heat transfer
,” in
Proceedings of 6th International Symposium on Heat Transfer
(ASME,
2004
), pp.
441
446
.
174.
D.
Wen
and
Y.
Ding
, “
Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids
,”
J. Nanopart. Res.
7
(
2–3
),
265
274
(
2005
).
175.
D.
Wen
, “
Mechanisms of thermal nanofluids on enhanced critical heat flux (CHF)
,”
Int. J. Heat Mass Transfer
51
(
19–20
),
4958
4965
(
2008
).
176.
D.
Wen
,
Y.
Ding
, and
R. A.
Williams
, “
Pool boiling heat transfer of aqueous TiO2-based nanofluids
,”
J. Enhanced Heat Transfer
13
(
3
),
231
244
(
2006
).
177.
S.
Witharana
, “
Boiling of refrigerants on enhanced surfaces and boiling of nanofluids
,” Ph.D. dissertation (
KTH Royal Institute of Technology
,
2003
).
178.
I. C.
Bang
and
S. H.
Chang
, “
Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool
,”
Int. J. Heat Mass Transfer
48
,
2407
2419
(
2005
).
179.
S. K.
Das
,
N.
Putra
, and
W.
Roetzel
, “
Pool boiling of nano-fluids on horizontal narrow tubes
,”
Int. J. Multiphase Flow
29
,
1237
1247
(
2003
).
180.
J. E.
Jackson
, “
Investigation into the pool-boiling characteristics of gold nanofluids
,” M.S. thesis (
University of Missouri - Columbia
,
2007
).
181.
L. W.
Kim
,
S. J.
Bang
,
I. C.
Buongiorno
, and
J.
Hu
, “
Study of pool boiling an critical heat flux enhancement in nanofluids
,”
Bull. Pol. Acad. Sci. Tech. Sci.
55
(
2
),
211
216
(
2007
).
182.
D.
Milanova
and
R.
Kumar
, “
Role of ions in pool boiling heat transfer of pure and silica nanofluids
,”
Appl. Phys. Lett.
87
(
23
),
233107
(
2005
).
183.
D.
Zhou
, “
Heat transfer enhancement of copper nanofluid with acoustic cavitation
,”
Int. J. Heat Mass Transfer
47
(
14–16
),
3109
3117
(
2004
).
184.
M.
Chopkar
,
A. K.
Das
,
I.
Manna
, and
P. K.
Das
, “
Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool
,”
Heat Mass Transfer
44
(
8
),
999
1004
(
2008
).
185.
G. P.
Narayan
,
K. B.
Anoop
, and
S. K.
Das
, “
Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes
,”
J. Appl. Phys.
102
(
7
),
074317
(
2007
).
186.
P.
Vassallo
, “
Pool boiling heat transfer experiments in silica–water nano-fluids
,”
Int. J. Heat Mass Transfer
47
(
2
),
407
411
(
2004
).
187.
S. M.
You
,
J. H.
Kim
, and
K. H.
Kim
, “
Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer
,”
Appl. Phys. Lett.
83
(
16
),
3374
3376
(
2003
).
188.
H. S.
Ahn
,
V.
Sathyamurthi
, and
D.
Banerjee
, “
Pool boiling experiments on a nano-structured surface
,”
IEEE Trans. Compon. Packag. Technol.
32
(
1
),
156
165
(
2009
).
189.
J. S.
Coursey
and
J.
Kim
, “
Nanofluid boiling: The effect of surface wettability
,”
Int. J. Heat Fluid Flow
29
(
6
),
1577
1585
(
2008
).
190.
K. H.
Krishna
,
H.
Ganapathy
,
G.
Sateesh
, and
S. K.
Das
, “
Pool boiling characteristics of metallic nanofluids
,”
J. Heat Transfer
133
(
11
),
111501
(
2011
).
191.
S.
Soltani
,
S. G.
Etemad
, and
J.
Thibault
, “
Pool boiling heat transfer of non-Newtonian nanofluids
,”
Int. Commun. Heat Mass Transfer
37
(
1
),
29
33
(
2010
).
192.
H.
Kim
and
M.
Kim
, “
Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids
,”
Heat Mass Transfer
45
(
7
),
991
998
(
2009
).
193.
D.
Milanova
and
R.
Kumar
, “
Heat Transfer behavoir of oxide nanoparticles in pool boiling experiment
,”
J. Heat Transfer
130
,
042401
(
2008
).
194.
V.
Sajith
,
M. R.
Madhusoodanan
, and
C. B.
Sobhan
, “
An experimental investigation of the boiling performance of water-based nanofluids
,” in
Proceedings of the ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer, Parts A and B
(ASME,
2008
), pp.
555
561
.
195.
V.
Trisaksri
and
S.
Wongwises
, “
Nucleate pool boiling heat transfer of TiO2–R141b nanofluids
,”
Int. J. Heat Mass Transfer
52
(
5–6
),
1582
1588
(
2009
).
196.
R.
Hegde
,
S. S.
Rao
, and
R. P.
Reddy
, “
Critical heat flux enhancement in pool boiling using alumina nanofluids
,”
Heat Transfer Asian Res.
39
(
5
),
323
331
(
2010
).
197.
C.
Gerardi
,
J.
Buongiorno
,
L.-W.
Hu
, and
T.
McKrell
, “
Infrared thermometry study of nanofluid pool boiling phenomena
,”
Nanoscale Res. Lett.
6
(
1
),
232
(
2011
).
198.
M.
Sheikhbahai
,
M.
Nasr Esfahany
, and
N.
Etesami
, “
Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field
,”
Int. J. Therm. Sci.
(to be published).
199.
J. H. H.
Kim
,
K. H. H.
Kim
, and
S. M.
You
, “
Pool boiling heat transfer in saturated nanofluids
,” in
Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition
(ASME,
2004
), pp.
621
628
.
200.
S.
Vemuri
and
K. J.
Kim
, “
Pool boiling of saturated FC-72 on nano-porous surface B
,”
Int. J. Heat Mass Transfer
32
,
27
31
(
2005
).
201.
V. P.
Carey
,
Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
, 2nd ed. (
Taylor & Francis
,
2007
), p.
600
.
202.
R. I.
Vachon
,
G. H.
Nix
, and
G. E.
Tanger
, “
Evaluation of constants for the Rohsenow pool-boiling correlation
,”
J. Heat Transfer
90
(
2
),
239
246
(
1968
).
203.
W. M.
Singh
,
A.
Mikic
, and
B. B.
Rohsenow
, “
Active sites in boiling
,”
Trans. ASME, Ser. C: J. Heat Transfer
98
,
401
406
(
1976
).
204.
B.
Olle
,
S.
Bucak
,
T. C.
Holmes
,
L.
Bromberg
,
T. A.
Hatton
, and
D. I. C.
Wang
, “
Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles
,”
Ind. Eng. Chem. Res.
45
(
12
),
4355
4363
(
2006
).
205.
F. A. E. and A. E. Commission
,
Nanofluids for Heat Transfer Applications
(
Marketing Study Unit
,
France
,
2007
).
206.
R.
Saidur
,
K. Y.
Leong
, and
H. A.
Mohammad
, “
A review on applications and challenges of nanofluids
,”
Renewable Sustainable Energy Rev.
15
(
3
),
1646
1668
(
2011
).
207.
W.
Yu
,
D. M.
France
,
S. U. S.
Choi
, and
J. L.
Routbort
,
Review and Assessment of Nanofluid Technology for Transportation and Other Applications
, Argonne National Laboratory Technical Report ANL/ESD/07-0 (
2007
).
208.
D.
Kulkarni
,
R.
Vajjha
,
D.
Das
, and
D.
Oliva
, “
Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant
,”
Appl. Therm. Eng.
28
(
14–15
),
1774
1781
(
2008
).
209.
J.
Buongiorno
and
L.-W.
Hu
, “
Innovative technologies: Two-phase heat transfer in water-based nanofluids for nuclear applications
,” Final Report for Nuclear Engineering Education Research (NEER) Program Award No. DE-FG07-07ID14765, Massachusetts Institute of Technology,
2009
.
210.
S. J.
Kim
,
T.
McKrell
,
J.
Buongiorno
, and
L.-W.
Hu
, “
Experimental study of flow critical heat flux in alumina-water, zinc-oxide-water, and diamond-water nanofluids
,”
J. Heat Transfer
131
(
4
),
043204
(
2009
).
211.
S. D.
Park
 et al, “
Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux
,”
Appl. Phys. Lett.
97
(
2
),
023103
(
2010
).
212.
D.
Zhu
,
S.
Wu
, and
N.
Wang
, “
Thermal physics and critical heat flux characteristics of Al2O3-H2O nanofluids
,”
Heat Transfer Eng.
31
(
14
),
1213
1219
(
2010
).
213.
W.-G.
Kim
,
H. U.
Kang
,
K.-M.
Jung
, and
S. H.
Kim
, “
Synthesis of silica nanofluid and application to CO2 absorption
,”
Sep. Sci. Technol.
43
(
11–12
),
3036
3055
(
2008
).
214.
E. L.
Cussler
,
Diffusion: Mass Transfer in Fluid Systems, Cambridge Series in Chemical Engineering
(
Cambridge University Press
,
2009
), p.
654
.
215.
F.
Kreuzer
, “
Facilitated diffusion of oxygen and its possible significance: A review
,”
Respir. Physiol.
9
(
1
),
1
30
(
1970
).
216.
D.
Shin
and
D.
Banerjee
, “
Enhanced specific heat of silica nanofluid
,”
J. Heat Transfer
133
(
2
),
024501
(
2011
).
217.
S.
Wu
,
D.
Zhu
,
X.
Zhang
, and
J.
Huang
, “
Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)
,”
Energy Fuels
24
(
3
),
1894
1898
(
2010
).
218.
N.
Palombo
and
K.
Park
, “
Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum
,” in
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
(ASME,
2011
), pp.
1
5
.
219.
W.
Lv
,
T. P.
Otanicar
,
P. E.
Phelan
,
L.
Dai
,
R. A.
Taylor
, and
R.
Swaminathan
, “
Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption
,” in
Micro/Nanoscale Heat & Mass Transfer International Conference
,
2012
.
220.
L. M.
Liz-Marzán
, “
Tailoring surface plasmons through the morphology and assembly of metal nanoparticles
,”
Langmuir
22
(
1
),
32
41
(
2006
).
221.
J. J.
Mock
,
M.
Barbic
,
D. R.
Smith
,
D. A.
Schultz
, and
S.
Schultz
, “
Shape effects in plasmon resonance of individual colloidal silver nanoparticles
,”
Chem. Phys.
116
(
15
),
6755
(
2002
).
222.
J.
Nelayah
,
M.
Kociak
,
O.
Stéphan
,
F. J.
García de Abajo
,
M.
Tencé
,
L.
Henrard
,
D.
Taverna
,
I.
Pastoriza-Santos
,
L. M.
Liz-Marzán
, and
C.
Colliex
, “
Mapping Surface Plasmons on a Single Metallic Nanoparticle
,”
Nature Physics
3
(
5
),
348
353
(
2007
).
223.
L.
Vekas
, “
Magnetic nanofluids properties and some applications
,”
Nanostruct. Mater.
49
,
707
721
(
2004
).
224.
L.
Vékás
,
D.
Bica
, and
M. V.
Avdeev
, “
Magnetic nanoparticles and concentrated magnetic nanofluids: Synthesis, properties and some applications
,”
China Particuol.
5
(
1–2
),
43
49
(
2007
).
225.
B. J.
Park
,
K. H.
Song
, and
H. J.
Choi
, “
Magnetic carbonyl iron nanoparticle based magnetorheological suspension and its characteristics
,”
Mater. Lett.
63
(
15
),
1350
1352
(
2009
).
226.
K. H.
Song
,
B. J.
Park
, and
H. J.
Choi
, “
Effect of magnetic nanoparticle additive on characteristics of magnetorheological fluid
,”
IEEE Trans. Magn.
45
(
10
),
4045
4048
(
2009
).
227.
I. G.
Kim
,
K. H.
Song
,
B. O.
Park
,
B. I.
Choi
, and
H. J.
Choi
, “
Nano-sized Fe soft-magnetic particle and its magnetorheology
,”
Colloid Polym. Sci.
289
(
1
),
79
83
(
2011
).
228.
K. T.
Wu
,
P. C.
Kuo
,
Y. D.
Yao
, and
E. H.
Tsai
, “
Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique
,”
IEEE Trans. Magn.
37
(
4
),
2651
2653
(
2001
).
229.
C.
Alexiou
 et al, “
Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting
,”
J. Magn. Magn. Mater.
225
,
187
193
(
2001
).
230.
J.
Li
,
D.
Dai
,
B.
Zhao
,
Y.
Lin
, and
C.
Liu
, “
Properties of ferrofluid nanoparticles prepared by coprecipitation and acid treatment
,”
J. Nanopart. Res.
4
,
261
264
(
2002
).
231.
Y.
Gao
,
J. P.
Huang
,
Y. M.
Liu
,
L.
Gao
,
K. W.
Yu
, and
X.
Zhang
, “
Optical negative refraction in ferrofluids with magnetocontrollability
,”
Phys. Rev. Lett.
104
(
3
),
034501
(
2010
).
232.
W. D.
Drotning
, “
Optical properties of solar-absorbing oxide particles suspended in a molten salt heat transfer fluid
,”
Sol. Energy
20
(
4
),
313
319
(
1978
).
233.
Z.
Liu
,
W.
Hou
,
P.
Pavaskar
,
M.
Aykol
, and
S. B.
Cronin
, “
Plasmon resonant enhancement of photocatalytic water splitting under visible illumination
,”
Nano Lett.
11
(
3
),
1111
1116
(
2011
).
234.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
(
23
),
10871
10875
(
2004
).
235.
N. J.
Halas
,
S.
Lal
,
W.-S.
Chang
,
S.
Link
, and
P.
Nordlander
, “
Plasmons in strongly coupled metallic nanostructures
,”
Chem. Rev.
111
(
6
),
3913
3961
(
2011
).
236.
R. A.
Taylor
,
T. P.
Otanicar
, and
G.
Rosengarten
, “
Nanofluid-based optical filter optimization for PV/T systems
,”
Nature Light Sci. Appl.
1
,
e35
(
2012
).
237.
M. E.
Flatté
,
A. A.
Kornyshev
, and
M.
Urbakh
, “
Giant stark effect in quantum dots at liquid/liquid interfaces: A new option for tunable optical filters
,”
Proc. Natl. Acad. Sci. U.S.A.
105
(
47
),
18212
4
(
2008
).
238.
R.
Kitsomboonloha
,
C.
Ngambenjawong
,
W. S.
Mohammed
,
M. B.
Chaudhari
,
G. L.
Hornyak
, and
J.
Dutta
, “
Plasmon resonance tuning of gold and silver nanoparticle-insulator multilayered composite structures for optical filters
,”
Micro Nano Lett.
6
(
6
),
342
(
2011
).
239.
A. E.
Neeves
and
M. H.
Birnboim
, “
Composite structures for the enhancement of nonlinear-optical susceptibility
,”
J. Opt. Soc. Am. B
6
(
4
),
787
(
1989
).
240.
W. M.
Winslow
, “
Induced fibration of suspensions
,”
J. Appl. Phys.
20
(
12
),
1137
(
1949
).
241.
J.
Rainbow
, “
The magnetic fluid clutch
,”
Trans. Am. Inst. Electr. Eng.
67
,
1308
(
1948
).
242.
J. L.
Neuringer
and
R. E.
Rosensweig
, “
Ferrohydrodynamics
,”
Phys. Fluids
7
(
12
),
1927
(
1964
).
243.
K.
Raj
,
B.
Moskowitz
, and
R.
Casciari
, “
Advances in ferrofluid technology
,”
J. Magn. Magn. Mater.
149
,
174
180
(
1995
).
244.
J.
de Vicente
,
D. J.
Klingenberg
, and
R.
Hidalgo-Alvarez
, “
Magnetorheological fluids: A review
,”
Soft Matter
7
(
8
),
3701
(
2011
).
245.
R. W.
Chantrell
,
A.
Bradbury
,
J.
Popplewell
, and
S. W.
Charles
, “
Agglomerate formation in a magnetic fluid
,”
J. Appl. Phys.
53
(
3
),
2742
(
1982
).
246.
D. K.
Singh
,
D. K.
Pandey
, and
R. R.
Yadav
, “
An ultrasonic characterization of ferrofluid
,”
Ultrasonics
49
(
8
),
634
637
(
2009
).
247.
S. A.
Patil
,
H. P.
Suryawanshi
,
S. R.
Bakliwal
, and
S. P.
Pawar
, “
Ferro fluids: A promising drug carrier—a review
,”
Int. J. Pharm. Res. Dev.
2
(
10
),
25
29
(
2010
).
248.
K.
Büscher
,
C. A.
Helm
,
C.
Gross
,
G.
Glöckl
,
E.
Romanus
, and
W.
Weitschies
, “
Nanoparticle composition of a ferrofluid and its effects on the magnetic properties
,”
Langmuir
20
(
6
),
2435
2444
(
2004
).
249.
S.
Ummartyotin
,
J.
Juntaro
,
M.
Sain
, and
H.
Manuspiya
, “
The role of ferrofluid on surface smoothness of bacterial cellulose nanocomposite flexible display
,”
Chem. Eng. J.
193–194
,
16
20
(
2012
).
250.
R. E.
Rosenweig
, “
Buoyancy and stable levitation of a magnetic body immersed in a magnetizable fluid
,”
Nature
210
(
5036
),
613
614
(
1966
).
251.
R.
Moskowitz
and
R. E.
Rosenweig
, “
Nonmechanical torque-driven flow of a ferromagnetic fluid by an electromagnetic field
,”
Appl. Phys. Lett.
11
(
10
),
301
(
1967
).
252.
D.
Psaltis
,
S. R.
Quake
, and
C.
Yang
, “
Developing optofluidic technology through the fusion of microfluidics and optics
,”
Nature
442
(
7101
),
381
386
(
2006
).
253.
C.
Monat
,
P.
Domachuk
, and
B. J.
Eggleton
, “
Integrated optofluidics: A new river of light
,”
Nature Photon.
1
,
106
114
(
2007
).
254.
I.
Sharifi
,
H.
Shokrollahi
, and
S.
Amiri
, “
Ferrite-based magnetic nanofluids used in hyperthermia applications
,”
J. Magn. Magn. Mater.
324
(
6
),
903
915
(
2012
).
255.
A.
Labarta
,
O.
Iglesias
,
L.
Balcells
, and
F.
Badia
, “
Magnetic relaxation in small-particle systems: T 1n(t/tau_o) scaling
,”
Phys. Rev. B
48
(
14
),
10240
10246
(
1993
).
256.
J. J.
Lai
,
K. E.
Nelson
,
M. A.
Nash
,
A. S.
Hoffman
,
P.
Yager
, and
P. S.
Stayton
, “
Dynamic bioprocessing and microfluidic transport control with smart magnetic nanoparticles in laminar-flow devices
,”
Lab Chip
9
(
14
),
1997
2002
(
2009
).
257.
P. D.
Shima
,
J.
Philip
, and
B.
Raj
, “
Magnetically controllable nanofluid with tunable thermal conductivity and viscosity
,”
Appl. Phys. Lett.
95
(
13
),
133112
(
2009
).
258.
E.
Andablo-Reyes
,
R.
Hidalgo-Álvarez
, and
J.
de Vicente
, “
Controlling friction using magnetic nanofluids
,”
Soft Matter
7
(
3
),
880
(
2011
).
259.
V.
Segal
,
A.
Hjortsberg
,
A.
Rabinovich
,
D.
Nattrass
, and
F.
Dreparation
, “
AC (60 Hz) impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles
,” in
Conference Record of the 1998 IEEE International Symposium on Electrical Insulation
(
IEEE
,
1998
), pp.
619
622
.
260.
D. U.
Yue-Fan
,
L. V.
Yu-Zhen
,
Z.
Jian-Quan
,
L. I.
Xiao-Xin
, and
L. I.
Cheng-Rong
, “
Breakdown Properties of Transformer Oil-based TiO2 Nanofluid
,” in
Proceedings of the 2010 Annual Report Conference on Electrical Insulation and Dielectric Phenomena
(IEEE,
2010
), pp.
3
6
.
261.
Y.-Z.
Lv
,
L.-F.
Wang
,
X.-X.
Li
,
Y.-F.
Du
,
J.-Q.
Zhou
, and
C.-R.
Li
, “
Experimental investigation of breakdown strength of mineral oil-based nanofluids
,” in
Proceedings of the 2011 IEEE International Conference on Dielectric Liquids
(IEEE,
2011
), pp.
11
13
.
262.
P.
Andresen
,
A.
Bath
,
W.
Groger
,
G.
Meijer
, and
J. J.
Meulen
, “
Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: Checks with an atmospheric flame
,”
Appl. Opt.
27
(
2
),
365
378
(
1988
).
263.
A.
Steinfeld
and
M.
Schubnell
, “
Optimum aperture size and operating temperature of a solar cavity-receiver
,”
Sol. Energy
50
(
1
),
19
25
(
1993
).
264.
F. J.
Miller
and
R. W.
Koenigsdorff
, “
Thermal modeling of a small-particle solar central
,”
J. Sol. Energy Eng.
122
(
1
),
23
29
(
2000
).
265.
R.
Bertocchi
,
A.
Kribus
, and
J.
Karni
, “
Experimentally determined optical properties of a polydisperse carbon black cloud for a solar particle receiver
,”
J. Sol. Energy Eng.
126
,(
3
),
833
(
2004
).
266.
S.
Haussener
,
D.
Hirsch
,
C.
Perkins
,
A.
Weimer
,
A.
Lewandowski
, and
A.
Steinfeld
, “
Modeling of a multitube high-temperature solar thermochemical reactor for hydrogen production
,”
J. Sol. Energy Eng.
131
(
2
),
024503
(
2009
).
267.
S.
Merabia
,
P.
Keblinski
,
L.
Joly
,
L. J.
Lewis
, and
J.-l.
Barrat
, “
Critical heat flux around strongly heated nanoparticles
,”
Phys. Rev. E
79
(
2
),
021404
(
2009
).
268.
H.
Tyagi
, “
Radiative and combustion properties of nanoparticle-laden liquids
,” Ph.D. dissertation (
Arizona State University
,
2008
).
269.
A.
Lenert
,
Y. S. P.
Zuniga
, and
E. N.
Wang
, “
Nanofluid-based absorbers for high temperature direct solar collectors
,” in
Proceedings of the 2010 14th International Heat Transfer Conference
(ASME,
2010
), pp.
499
508
.
270.
E.
Natarajan
and
R.
Sathish
, “
Role of nanofluids in solar water heater
,”
Int. J. Adv. Manuf. Technol.
(
2009
).
271.
R. A.
Taylor
,
P. E.
Phelan
,
T. P.
Otanicar
, and
S.
Trimble
, “
Applicability of nanofluids in concentrated solar energy harvesting
,” in
Proceedings of the ASME 2010 4th International Conference on Energy Sustainability
(ASME,
2010
), pp.
825
832
.
272.
T. P.
Otanicar
,
P. E.
Phelan
,
R. S.
Prasher
,
G.
Rosengarten
, and
R. A.
Taylor
, “
Nanofluid-based direct absorption solar collector
,”
J. Renewable Sustainable Energy
2
(
3
),
033102
(
2010
).
273.
E.
Sani
 et al, “
Potential of carbon nanohorn-based suspensions for solar thermal collectors
,”
Sol. Energy Mater. Sol. Cells
95
(
11
),
2994
3000
(
2011
).
274.
R. A.
Taylor
,
P. E.
Phelan
,
T.
Otanicar
,
R. J.
Adrian
, and
R. S.
Prasher
, “
Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam
,”
Appl. Phys. Lett.
95
,
161907
(
2009
).
275.
H.
Tyagi
,
P.
Phelan
, and
R.
Prasher
, “
Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
,”
J. Sol. Energy Eng.
131
(
4
),
041004
(
2009
).
276.
D.
Han
,
Z.
Meng
,
D.
Wu
,
C.
Zhang
, and
H.
Zhu
, “
Thermal properties of carbon black aqueous nanofluids for solar absorption
,”
Nanoscale Res. Lett.
6
(
1
),
457
(
2011
).
277.
T. P.
Otanicar
and
J. S.
Golden
, “
Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies
,”
Environ. Sci. Technol.
43
(
15
),
6082
6087
(
2009
).
278.
L.
Lu
,
Z.-H.
Liu
, and
H.-S.
Xiao
, “
Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors
,”
Sol. Energy
85
(
2
),
379
387
(
2011
).
279.
A.
Veeraragavan
,
A.
Lenert
,
B.
Yilbas
,
S.
Al-Dini
, and
E. N.
Wang
, “
Analytical model for the design of volumetric solar flow receivers
,”
Int. J. Heat Mass Transfer
55
(
4
),
556
564
(
2012
).
280.
T.
Yousefi
,
F.
Veysi
,
E.
Shojaeizadeh
, and
S.
Zinadini
, “
An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat-plate solar collectors
,”
Renewable Energy
39
(
1
),
293
298
(
2012
).
281.
A.
Lenert
and
E. N.
Wang
, “
Optimizaton of nanofluid volumetric receivers for solar thermal energy conversion
,”
Sol. Energy
86
,
253
265
(
2012
).
282.
M.
Ferrari
, “
Cancer nanotechnology: Opportunities and challenges
,”
Nat. Rev. Cancer
5
(
3
),
161
71
(
2005
).
283.
T. M.
Allen
, “
Ligand-targeted therapeutics in anticancer therapy
,”
Nat. Rev. Cancer
2
(
10
),
750
763
(
2002
).
284.
S.
Nie
,
Y.
Xing
,
G. J.
Kim
, and
J. W.
Simons
, “
Nanotechnology applications in cancer
,”
Annu. Rev. Biomed. Eng.
9
,
257
88
(
2007
).
285.
L. K.
Kelly
,
E.
Coranado
,
L. L.
Zhao
, and
G. C.
Schatz
, “
The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment
,”
J. Phys. Chem. B
107
,
668
677
(
2003
).
286.
A. J.
Schmidt
,
J. D.
Alper
,
M.
Chiesa
,
G.
Chen
,
S. K.
Das
, and
K.
Hamad-Schifferli
, “
Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay
,”
J. Phys. Chem. C
112
(
35
),
13320
13323
(
2008
).
287.
L. R.
Hirsch
 et al, “
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance
,”
Proc. Natl. Acad. Sci. U.S.A.
100
(
23
),
13549
13554
(
2003
).
288.
J. W.
Park
, “
Liposome-based drug delivery in breast cancer treatment
,”
Breast Cancer Res.: BCR
4
(
3
),
95
99
(
2002
).
289.
E. R.
Gillies
and
J. M. J.
Fréchet
, “
Designing macromolecules for therapeutic applications: Polyester dendrimer-poly(ethylene oxide) ‘bow-tie’ hybrids with tunable molecular weight and architecture
,”
J Am. Chem. Soc.
124
(
47
),
14137
14146
(
2002
).
290.
L.
Levy
,
Y.
Sahoo
,
K.-S.
Kim
,
E. J.
Bergey
, and
P. N.
Prasad
, “
Nanochemistry: Synthesis and characterization of multifunctional nanoclinics for biological applications
,”
Chem. Mater.
14
(
9
)
3715
3721
(
2002
).
291.
E. J.
Bergey
 et al, “
DC magnetic field induced magnetocytolysis of cancer cells targeted by LH-RH magnetic nanoparticles in vitro
,”
Biomed. Microdevices
4
(
4
),
293
299
(
2002
).
292.
S. H.
Bloch
,
M.
Wan
,
P. A.
Dayton
, and
K. W.
Ferrara
, “
Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents
,”
Appl. Phys. Lett.
84
(
4
),
631
633
(
2004
).
293.
G.
Kong
,
R. D.
Braun
, and
M. W.
Dewhirst
, “
Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size
,”
Cancer Res.
60
,
4440
4445
(
2000
). Available at: http://cancerres.aacrjournals.org/content/60/16/4440.
294.
M.
Johannsen
,
B.
Thiesen
,
P.
Wust
, and
A.
Jordan
, “
Magnetic nanoparticle hyperthermia for prostate cancer
,”
Int. J. Hyperthermia
26
(
8
),
790
795
(
2010
).
295.
R.
Hergt
,
S.
Dutz
,
R.
Müller
, and
M.
Zeisberger
, “
Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy
,”
J. Phys.: Condens. Matter
18
(
38
),
S2919
S2934
(
2006
).
296.
M.
Salloum
,
R. H.
Ma
,
D.
Weeks
, and
L.
Zhu
, “
Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel
,”
Int. J. Hyperthermia
24
(
4
),
337
345
(
2008
).
297.
T.
Kikumori
,
T.
Kobayashi
,
M.
Sawaki
, and
T.
Imai
, “
Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes
,”
Breast Cancer Res. Treat.
113
(
3
),
435
441
(
2009
).
298.
P.
Grodzinski
,
M.
Silver
, and
L. K.
Molnar
, “
Nanotechnology for cancer diagnostics: Promises and challenges
,”
Expert Rev. Mol. Diagn.
6
(
3
),
307
318
(
2006
).
299.
L.
LaConte
,
N.
Nitin
, and
G.
Bao
, “
Magnetic nanoparticle probes
,”
Mater. Today
8
(
5
),
32
38
(
2005
).
300.
Y.
Gu
,
W.
Sun
,
G.
Wang
, and
N.
Fang
, “
Understanding nanoparticle drug delivery from rotational dynamics and behaviors of functionalized gold nanorods on live cell membranes
,”
Biophys. J.
100
(
3
),
473a
473a
(
2011
).
301.
P.
Keblinski
,
D. G.
Cahill
,
A.
Bodapati
,
C. R.
Sullivan
, and
T. A.
Taton
, “
Limits of localized heating by electromagnetically excited nanoparticles
,”
J. Appl. Phys.
100
(
5
),
054305
(
2006
).
302.
L. A.
Dombrovsky
,
V.
Timchenko
,
M.
Jackson
, and
G. H.
Yeoh
, “
A combined transient thermal model for laser hyperthermia of tumors with embedded gold nanoshells
,”
Int. J. Heat Mass Transfer
54
(
25–26
),
5459
5469
(
2011
).
303.
S.
Parveen
and
S. K.
Sahoo
, “
Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery
,”
Eur. J. Pharmacol.
670
(
2–3
),
372
383
(
2011
).
304.
S.
Aryal
,
C.-M.
Jack Hu
,
V.
Fu
, and
L.
Zhang
, “
Nanoparticle drug delivery enhances the cytotoxicity of hydrophobic–hydrophilic drug conjugates
,”
J. Mater. Chem.
22
(
3
),
994
999
(
2012
).
305.
S. C.
Roy
,
O. K.
Varghese
,
M.
Paulose
, and
C. A.
Grimes
, “
Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons
,”
ACS Nano
4
(
3
),
1259
1278
(
2010
).
306.
A.
Sınağ
,
T.
Yumak
,
V.
Balci
, and
A.
Kruse
, “
Catalytic hydrothermal conversion of cellulose over SnO2 and ZnO nanoparticle catalysts
,”
J. Supercrit. Fluids
56
(
2
),
179
185
(
2011
).
307.
Y.
Li
and
G. A.
Somorjai
, “
Nanoscale advances in catalysis and energy applications
,”
Nano Lett.
10
(
7
),
2289
2295
(
2010
).
308.
E.
Serrano
,
G.
Rus
, and
J.
García-Martínez
, “
Nanotechnology for sustainable energy
,”
Renewable Sustainable Energy Rev.
13
(
9
),
2373
2384
(
2009
).
309.
M.
Trépanier
,
A. K.
Dalai
, and
N.
Abatzoglou
, “
Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions
,”
Appl. Catal. A
374
(
1–2
),
79
86
(
2010
).
310.
E. W.
Ping
,
J.
Pierson
,
R.
Wallace
,
J. T.
Miller
,
T. F.
Fuller
, and
C. W.
Jones
, “
On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids
,”
Appl. Catal., A
396
(
1–2
),
85
90
(
2011
).
311.
J. S.
Basha
and
R. B.
Anand
, “
An experimental study in a CI engine using nanoadditive blended water–diesel emulsion fuel
,”
Int. J. Green Energy
8
(
3
),
332
348
(
2011
).
312.
M.
Jones
, “
Ignition and combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol) and hydrocarbons
,” M.S. thesis (
The University of Toledo
,
2011
).
313.
Y.
Gan
,
Y. S.
Lim
, and
L.
Qiao
, “
Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations
,”
Combust. Flame
159
(
4
),
1732
1740
(
2012
).
314.
C. H.
Li
, “
Experimental study of nanoadditives for biofuel combustion improvement
,” in
Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition
(ASME,
2011
),
1
8
.
315.
H.
Tyagi
 et al, “
Increased hot-plate ignition probability for nanoparticle-laden diesel fuel
,”
Nano Lett.
8
(
5
),
1410
1416
(
2008
).
316.
M. O.
Nutt
,
J. B.
Hughes
, and
S. W.
Michael
, “
Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination
,”
Environ. Sci. Technol.
39
(
5
),
1346
1353
(
2005
).
317.
M.
Turner
 et al, “
Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters
,”
Nature
454
(
7207
),
981
983
(
2008
).
318.
W.
Hou
,
N.
Dehm
, and
R.
Scott
, “
Alcohol oxidations in aqueous solutions using Au, Pd, and bimetallic AuPd nanoparticle catalysts
,”
J. Catal.
253
(
1
),
22
27
(
2008
).
319.
F.
Tao
 et al, “
Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles
,”
Science
322
(
5903
),
932
934
(
2008
).
You do not currently have access to this content.