Interest in the electromagnetic properties of loop structures has surged with the recent appearance of split-ring resonator meta-materials (SRRs) and nano-antennas. Understanding the resonances, anti-resonances, and harmonics of these loops is key to understanding their response to a wide range of excitation wavelengths. We present the classical analytical solution for the input impedance of a loop structure with circumference on the order of the wavelength, and we show how to identify these resonances from the function. We transform the classical solution into a new RLC formulation and show that each natural mode of the loop can be represented as a series resonant circuit, such that the full response function can be resolved by placing all of these circuits in parallel. We show how this formulation applies to SRRs.

1.
J. B.
Pendry
,
A. J.
Holden
,
D. J.
Robbins
, and
W. J.
Stewart
,
IEEE Trans. Microwave Theory Tech.
47
,
2075
(
1999
).
2.
A.
Locatelli
,
IEEE Photon. J.
3
,
845
(
2011
).
3.
D. R.
Chowdhury
,
R.
Singh
,
M.
Reiten
,
H.-T.
Chen
,
A. J.
Taylor
,
J. F.
O'Hara
, and
A. K.
Azad
,
Opt. Express
19
,
15817
(
2011
).
4.
A.
Ahmadi
and
H.
Mosallaei
,
Opt. Lett.
35
,
3706
(
2010
).
5.
V.
Delgado
,
O.
Sydoruk
,
E.
Tatartschuk
,
R.
Marques
,
M. J.
Freire
, and
L.
Jelinek
,
Metamaterials
3
,
57
(
2009
).
6.
K.
Aydin
and
E.
Ozbay
,
J. Appl. Phys.
101
,
024911
(
2007
).
7.
C.
Enkrich
,
M.
Wegener
,
S.
Linden
,
S.
Burger
,
L.
Zschiedrich
,
F.
Schmidt
,
J. F.
Zhou
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. Lett.
95
,
203901
(
2005
).
8.
W. J.
Padilla
,
D. N.
Basov
, and
D. R.
Smith
,
Mater. Today
9
,
28
(
2006
).
9.
C.
Rockstuhl
,
T.
Zentgraf
,
H.
Guo
,
N.
Liu
,
C.
Etrich
,
I.
Loa
,
K.
Syassen
,
J.
Kuhl
,
F.
Lederer
, and
H.
Giessen
,
Appl. Phys. B
84
,
219
(
2006
).
10.
M.
Staffaroni
,
J.
Conway
,
S.
Vedantam
,
J.
Tang
, and
E.
Yablonovitch
,
Photonics Nanostruct. –Fundam. Appl.
10
,
166
(
2012
).
11.
A.
Salandrino
,
A.
Alù
, and
N.
Engheta
,
J. Opt. Soc. Am. B
24
,
3007
(
2007
).
12.
A.
Alu
,
A.
Salandrino
, and
N.
Engheta
,
J. Opt. Soc. Am. B
24
,
8
(
2007
).
13.
N.
Engheta
,
A.
Salandrino
, and
A.
Al
,
Phys. Rev. Lett.
95
,
95504
(
2005
).
14.
A.
Locatelli
,
C.
De Angelis
,
D.
Modotto
,
S.
Boscolo
,
F.
Sacchetto
,
M.
Midrio
,
A.-D.
Capobianco
,
F. M.
Pigozzo
, and
C. G.
Someda
,
Opt. Express
17
,
16792
(
2009
).
15.
A.
Alu
and
N.
Engheta
,
Phys. Rev. Lett.
101
,
43901
(
2008
).
16.
O.
Sydoruk
,
E.
Tatartschuk
,
E.
Shamonina
, and
L.
Solymar
,
J. Appl. Phys.
105
,
14903
(
2009
).
17.
S. A.
Cummer
,
B. I.
Popa
, and
T. H.
Hand
,
IEEE Trans. Antennas Propag.
56
,
127
(
2008
).
18.
M.
Shamonin
,
J. Appl. Phys.
95
,
3778
(
2004
).
19.
L.
Zhou
and
S. T.
Chui
,
Phys. Rev. B
74
,
035419
(
2006
).
20.
J. E.
Storer
, “
Impedance of the thin wire loop
,”
Tech. Rep.
Report #212 (
Cruft Laboratory, Harvard University
,
1955
), p.
6
.
21.
S.
Krishnan
,
L.
Le-Wei
,
L.
Mook-Seng
, and
K.
Pang-Shyan
,
Microwave Opt. Technol. Lett.
34
,
377
(
2002
).
22.
E.
Hallen
,
Nova Actae Regiae Soc.Sci. Ups. Ser. IV
11
,
1
(
1938
).
23.
T. T.
Wu
,
J. Math. Phys.
3
,
1301
(
1962
).
24.
B. A.
Rao
,
IEEE Trans. Antennas Propag.
16
(
2
),
269
(
1968
).
25.
M.
Kanda
,
IEEE Trans. Electromagn. Compat.
EMC-26
,
102
(
1984
).
26.
K.
Iizuka
,
IEEE Trans. Antennas Propag.
13
,
7
(
1965
).
27.
L.
RongLin
,
N. A.
Bushyager
,
J.
Laskar
, and
M. M.
Tentzeris
,
IEEE Trans. Antennas Propag.
53
,
3920
(
2005
).
28.
L.
Le-Wei
,
L.
Mook-Seng
,
K.
Pang-Shyan
, and
Y.
Tat-Soon
,
IEEE Trans. Antennas Propag.
45
,
1741
(
1997
).
29.
C.
Balanis
,
Antenna Theory: Analysis and Design
, 3rd ed. (
Wiley-Interscience
,
2005
), p.
245
.
30.
R. W. P.
King
, “
The loop antenna for transmission and reception
,” in
Antenna Theory, Part 1, Inter-University Electronic Series
, Vol.
7
, 1st ed., edited by
R. E.
Collin
and
F. J.
Zucker
(
McGraw-Hill
,
New York
,
1969
), Chap. 11, pp.
458
482
.
31.
M.
Abramowitz
and
I.
Stegun
,
Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Applied Mathematics Series
, Vol.
55
(
US. Government Printing Office
,
WDC
,
1964
), p.
1046
. See particularly page 275, Eqs. (9.6.12) and (9.6.13).
32.
See www.cst.com for Computer Simulation Technology AG, Microwave Studio, 2012, Darmstadt, Germany.
33.

MWS requires a frequency band for the test; we chose 10 GHz to 260 GHz. This is irrelevant for the theory, since Maxwell's equations scale with frequency and PEC materials are assumed throughout.

34.
See www.pacifict.com. for use of the Graphing Calculator, Pacific Tech. Berkeley, CA. 2012.
You do not currently have access to this content.