The thermal conductance for a series of metal-graphite interfaces has been experimentally measured with time-domain thermoreflectance (TDTR). For metals with Debye temperatures up to ∼400 K, a linear relationship exists with the thermal conductance values. For metals with Debye temperatures in excess of ∼400 K, the measured metal-graphite thermal conductance values remain constant near 60 MW m−2 K−1. Titanium showed slightly higher conductance than aluminum, despite the closeness of atomic mass and Debye temperature for the two metals. Surface analysis was used to identify the presence of titanium carbide at the interface in contrast to the aluminum and gold-carbon interfaces (with no detectable carbide phases). It was also observed that air-cleaved graphite surfaces in contact with metals yielded slightly higher thermal conductance than graphite surfaces cleaved in vacuo. Examination of samples with scanning electron microscopy revealed that the lack of absorbed molecules on the graphite surface resulted in differences in transducer film morphology, thereby altering the interface conductance. Classical molecular dynamic simulations of metal-carbon nanotube thermal conductance values were calculated and compared to the TDTR results. The upper limit of metal-graphite thermal conductance is attributed to the decreased coupling at higher frequencies of the lighter metals studied, and to the decreased heat capacity for higher vibrational frequency modes.

1.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
).
2.
E.
Pop
,
D.
Mann
,
Q.
Wang
,
K.
Goodson
, and
H.
Dai
,
Nano Lett.
6
,
96
(
2006
).
3.
B. A.
Cola
,
X.
Xu
, and
T. S.
Fisher
,
Appl. Phys. Lett.
90
,
093513
(
2007
).
4.
R.
Cross
,
B. A.
Cola
,
T. S.
Fisher
,
X.
Xu
,
K.
Gall
, and
S.
Graham
,
Nanotechnology
21
,
445705
(
2010
).
5.
Y. K.
Koh
,
M.-H.
Bae
,
D. G.
Cahill
, and
E.
Pop
,
Nano Lett.
10
,
4363
(
2010
).
6.
P. E.
Hopkins
,
M.
Baraket
,
E. V.
Barnat
,
T. E.
Beecham
,
S. P.
Kearney
,
J. C.
Duda
,
J. T.
Robinson
, and
S. G.
Walton
,
Nano Lett.
12
,
590
(
2012
).
7.
Z.
Chen
,
W.
Jang
,
W.
Bao
,
C. N.
Lau
, and
C.
Dames
,
Appl. Phys. Lett.
95
,
161910
(
2009
).
8.
K. F.
Mak
,
C. H.
Lui
, and
T. F.
Heinz
,
Appl. Phys. Lett.
97
,
221904
(
2010
).
9.
R.
Prasher
,
Phys. Rev. B.
77
,
075424
(
2008
).
10.
A. J.
Schmidt
,
K. C.
Collins
,
A. J.
Minnich
, and
G.
Chen
,
J. Appl. Phys.
107
,
104907
(
2010
).
11.
J. C.
Duda
,
P. E.
Hopkins
,
T. E.
Beechem
,
J. L.
Smoyer
, and
P. M.
Norris
,
Superlattices Microstruct.
47
,
550
(
2010
).
12.
J. L.
Smoyer
,
J. C.
Duda
,
P. M.
Norris
, and
A. W.
Lichtenberger
, in
Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference
, March 13-17, Honolulu, Hawaii, USA, AJTEC2011-44333 (
2011
).
13.
P. M.
Norris
,
J. L.
Smoyer
,
J. C.
Duda
, and
P. E.
Hopkins
,
J. Heat Transfer
134
,
020910
(
2012
).
14.
C. S.
Campos
,
E. A.
Coleoni
,
J. C.
Trincavelli
,
J.
Kaschny
,
R.
Hubbler
,
M. R. F.
Soares
, and
M. A. Z.
Vasconcellos
,
X–Ray Spectrom.
30
,
253
(
2001
).
15.
J. J.
Gengler
,
S.
Roy
,
J. G.
Jones
, and
J. R.
Gord
,
Meas. Sci. Technol.
23
,
055205
(
2012
).
16.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
17.
H.
Sun
,
J. Comput. Chem.
15
,
752
(
1994
).
18.
H.
Sun
,
S.
Mumby
,
J. R.
Maple
, and
A. T.
Hagler
,
J. Am. Chem. Soc.
116
,
2978
(
1994
).
19.
H.
Sun
,
Macromolecules
28
,
701
(
1995
).
20.
H.
Sun
and
D.
Rigby
,
Spectrochim. Acta A
53
,
1301
(
1997
).
21.
H.
Sun
,
J. Phys. Chem. B
102
,
7338
(
1998
).
22.
C.
Kittel
, in
Introduction to Solid State Physics
, 8th ed., edited by
S.
Johnson
(
Wiley
,
2005
), p.
116
.
23.
J.
Krumhansl
and
H.
Brooks
,
J. Chem. Phys.
21
,
1663
(
1953
).
24.
R.
Anton
and
I.
Schneidereit
,
Phys. Rev. B
58
,
13874
(
1998
).
25.
G. D.
Mahan
,
Phys. Rev. B
79
,
075408
(
2009
).
26.
G. D.
Mahan
,
Phys. Rev. B
81
,
195318
(
2010
).
27.
I.
Altfeder
,
A. A.
Voevodin
, and
A. K.
Roy
,
Phys. Rev. Lett.
105
,
166101
(
2010
).
28.
A. M.
Nemilentsau
and
S. V.
Rotkin
,
ASC Nano
6
,
4298
(
2012
).
29.
S.
Shenogin
,
J.
Gengler
,
A.
Roy
,
A.
Voevodin
, and
C.
Muratore
, “
Molecular dynamics studies of thermal boundary resistance at carbon-metal interfaces
,”
Appl. Phys. Lett.
(Submitted).
30.
Q.
Ma
and
R. A.
Rosenberg
,
Phys. Rev. B
60
,
2827
(
1999
).
You do not currently have access to this content.