The light activation phenomenon in inverted P3HT:PCBM bulk heterojunction organic solar cells based on titanium oxide sublayer (TiOx) is characterized by fast acquisition of current-voltage (J-V) curves under light bias as function of time. TiOx layers were thermally treated under inert atmosphere at different temperatures prior active layer deposition and for every device an activation time was extracted. It is shown that the higher the TiOx annealing temperature, the faster the activation. The improvement of the overall device performances is also observed for devices with TiOx layers baked above 100 °C. The evolution of the characteristic of the organic semiconductors (OSC) device, from dielectric to diode, is attributed to the increase of TiOx conductivity by three orders of magnitude upon white light illumination. Additionally, devices based on baked TiOx present higher conductivity than those based on unbaked TiOx which would explain the gain in performances and the short activation time of the OSC. In order to understand the origin of the phenomenon, deactivation experiments were also performed under different conditions on OSC. The deactivation process was shown to be thermally dependent and fully reversible under inert atmosphere, which suggest that deep traps are responsible for the activation phenomenon. An optimal annealing temperature was found at 120 °C and gives a reasonable short activation time of approximately 1 min and photo conversion efficiency up to 4%.
Skip Nav Destination
Article navigation
1 November 2012
Research Article|
November 05 2012
Towards an understanding of light activation processes in titanium oxide based inverted organic solar cells
S. Chambon;
S. Chambon
1
Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France and CNRS, IMS
, UMR 5218, F-33400 Talence, France
Search for other works by this author on:
E. Destouesse;
E. Destouesse
1
Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France and CNRS, IMS
, UMR 5218, F-33400 Talence, France
Search for other works by this author on:
B. Pavageau;
B. Pavageau
2
Univ. Bordeaux, LOF, UMR 5258, F-33600 Pessac, France; CNRS, LOF, UMR 5258, F-33600 Pessac, France; and RHODIA, LOF
, UMR 5258, F-33600 Pessac, France
Search for other works by this author on:
L. Hirsch;
L. Hirsch
1
Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence, France and CNRS, IMS
, UMR 5218, F-33400 Talence, France
Search for other works by this author on:
a)
Author to whom correspondence should be addressed; Electronic mail: guillaume.wantz@ims-bordeaux.fr.
J. Appl. Phys. 112, 094503 (2012)
Article history
Received:
June 14 2012
Accepted:
October 09 2012
Citation
S. Chambon, E. Destouesse, B. Pavageau, L. Hirsch, G. Wantz; Towards an understanding of light activation processes in titanium oxide based inverted organic solar cells. J. Appl. Phys. 1 November 2012; 112 (9): 094503. https://doi.org/10.1063/1.4764026
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00