We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in “quite small” conductive nanodomains (6–10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

1.
M.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
,
1897
(
2001
).
2.
G. Y.
Chai
,
O.
Lupan
,
E. V.
Rusu
,
G. I.
Stratan
,
V. V.
Ursaki
,
V.
Şontea
,
H.
Khallaf
, and
L.
Chow
,
Sens. Actuators, A
176
,
64
(
2012
).
3.
Z. L.
Wang
and
J.
Song
,
Science
312
,
242
(
2006
).
4.
B.
Yu
,
Y.
Ye
,
P.
Wu
,
Y.
Dai
,
H.
Zhang
, and
L.
Dai
,
Appl. Phys. Lett.
100
,
143509
(
2012
).
5.
K. S.
Leschkies
,
A. G.
Jacobs
,
D. J.
Norris
, and
E. S.
Aydil
,
Appl. Phys. Lett.
95
,
193103
(
2009
).
6.
Y.
Ye
,
B.
Yu
,
Z.
Gao
,
H.
Mang
,
H.
Zhang
,
L.
Dai
, and
G.
Qin
,
Nanotechnology
23
,
194004
(
2012
).
7.
O.
Lupan
,
T.
Pauporté
,
T. L.
Bahers
,
B.
Viana
, and
I.
Ciofini
,
Adv. Funct. Mater.
21
,
3564
(
2011
).
8.
M. A.
Mayer
,
K. M.
Yu
,
E. E.
Haller
, and
W.
Walukiewicz
,
J. Appl. Phys.
111
,
113505
(
2012
).
9.
B. O.
Cho
,
J.
Wang
,
L.
Sha
, and
J. P.
Chang
,
Appl. Phys. Lett.
80
,
1052
(
2002
).
10.
Y. F.
Chen
and
M. S.
Fuhrer
,
Nano Lett.
6
,
2158
(
2006
).
11.
J.
Chen
,
X.
Zhou
,
G. J.
Snyder
,
C.
Uher
,
N.
Chen
,
Z.
Wen
,
J.
Jin
,
H.
Dong
,
P.
Qiu
,
Y.
Zhou
,
X.
Shi
, and
L.
Chen
,
Chem. Commun.
47
,
12173
(
2011
).
12.
J.
Svensson
,
A. A.
Sourab
,
Y.
Tarakanov
,
D. S.
Lee
,
S. J.
Park
,
S. J.
Baek
,
Y. W.
Park
, and
E. E. B.
Campbell
,
Nanotechnology
20
,
175204
(
2009
).
13.
J. L.
Duvail
,
Y.
Long
,
S.
Cuenot
,
Z.
Chen
, and
C.
Gu
,
Appl. Phys. Lett.
90
,
102114
(
2007
).
14.
N.
Elfström
,
R.
Juhasz
,
I.
Sychugov
,
T.
Engfeldt
,
A. E.
Karlström
, and
J.
Linnros
,
Nano Lett.
7
,
2608
(
2007
).
15.
S. A.
Dayeh
,
E. T.
Yu
, and
D.
Wang
,
Small
5
,
77
(
2009
).
16.
J.
Segura-Ruiz
,
A.
Molina-Sánchez
,
N.
Garro
,
A.
García-Cristóbal
,
A.
Cantarero
,
F.
Iikawa
,
C.
Denker
,
J.
Malindretos
, and
A.
Rizzi
,
Phys. Rev. B
82
,
125319
(
2010
).
17.
N.
Spyropoulos-Antonakakis
,
E.
Sarantopoulou
,
Z.
Kollia
,
G.
Dražic
, and
S.
Kobe
,
Appl. Phys. Lett.
99
,
153110
(
2011
).
18.
R. A.
Kraya
and
L. Y.
Kraya
,
J. Appl. Phys.
111
,
064302
(
2012
).
19.
Z.
Zhang
,
K.
Yao
,
Y.
Liu
,
C.
Jin
,
X.
Liang
,
Q.
Chen
, and
L. M.
Peng
,
Adv. Funct. Mater.
17
,
2478
(
2007
).
20.
P. F.
McMillan
,
Nature Mater.
1
,
19
(
2002
).
21.
S. Q.
Hao
,
B.
Delley
,
S.
Veprek
, and
C.
Stampfl
,
Phys. Rev. Lett.
97
,
086102
(
2006
).
22.
S.
Yamanaka
,
K.
Hotehama
, and
H.
Kawaji
,
Nature
392
,
580
(
1998
).
23.
V. M.
Vinokur
,
T. L.
Baturina
,
M. V.
Fistul
,
A. Y.
Mironov
,
M. R.
Baklanov
, and
C.
Strunk
,
Nature
452
,
613
(
2008
).
24.
L.
Šiller
,
M. R. C.
Hunt
,
J. W.
Brown
,
J. M.
Coquel
, and
P.
Rudolf
,
Surf. Sci.
513
,
78
(
2002
).
25.
E.
Gregoryanz
,
C.
Sanloup
,
M.
Somayazulu
,
J.
Bardo
,
G.
Fiquet
,
H. K.
Mao
, and
R.
Hemley
,
Nature Mater.
3
,
294
(
2004
).
26.
J. C.
Crowhurst
,
A. F.
Goncharov
,
B.
Sadigh
,
C. L.
Evans
,
P. G.
Morrall
,
J. L.
Ferreira
, and
A. J.
Nelson
,
Science
311
,
1275
(
2006
).
27.
A. F.
Young
,
C.
Sanloup
,
E.
Gregoryanz
,
S.
Scandolo
,
R. J.
Hemley
, and
H. K.
Mao
,
Phys. Rev. Lett.
96
,
155501
(
2006
).
28.
J. C.
Crowhurst
,
A. F.
Goncharov
,
B.
Sadigh
,
J. M.
Zaug
,
D.
Aberg
,
Y.
Meng
, and
V. B.
Prakapenka
,
J. Mater. Res.
23
,
1
(
2008
).
29.
M. G.
Moreno-Armenta
,
J.
Diaz
,
A.
Martinez-Ruiz
, and
G. J.
Soto
,
Phys. Chem. Solids
68
,
1989
(
2007
).
30.
A.
Citra
and
L. J.
Andrews
,
Phys. Chem. A
103
,
3410
(
1999
).
31.
L.
Šiller
,
L.
Alves
,
A. C.
Brieva
,
Y. V.
Butenko
, and
M. R. C.
Hunt
,
Top Catal.
52
,
1604
(
2009
).
32.
L.
Alves
,
T. P. A.
Hase
,
M. R. C.
Hunt
,
A. C.
Brieva
, and
L.
Šiller
,
J. Appl. Phys.
104
,
113527
(
2008
).
33.
D.
Åberg
,
B.
Sadigh
,
J. C.
Crowhurst
, and
A. F.
Goncharov
,
Phys. Rev. Lett.
100
,
095501
(
2008
).
34.
E.
Zhao
and
Z. J.
Wu
,
Solid State Chem.
181
,
2814
(
2008
).
35.
B.
Hong
,
L.
Cheng
,
M. Y.
Wang
, and
Z. J.
Wu
,
Mol. Phys.
108
,
25
(
2010
).
36.
W.
Chen
and
J. Z.
Jiang
,
J. Alloys Compd.
499
,
243
(
2010
).
37.
L.
Šiller
,
L. N.
Peltekis
,
S.
Krishnamurthy
,
Y.
Chao
,
S. J.
Bull
, and
M. R. C.
Hunt
,
Appl. Phys. Lett.
86
,
221912
(
2005
).
38.
Y. V.
Butenko
,
L.
Alves
,
A. C.
Brieva
,
J.
Yang
,
S.
Krishnamurthy
, and
L.
Šiller
,
Chem. Phys. Lett.
430
,
89
(
2006
).
39.
A. C.
Brieva
,
L.
Alves
,
S.
Krishnamurthy
, and
L.
Šiller
,
J. Appl. Phys.
105
,
054302
(
2009
).
40.
A. P.
Caricato
,
M.
Fernàndez
,
G.
Leggieri
,
A.
Luches
,
M.
Martino
,
F.
Romano
,
T.
Tunno
,
D.
Valerini
,
A.
Verdyan
,
Y. M.
Soifer
,
J.
Azoulay
, and
L.
Meda
,
Appl. Surf. Sci.
253
,
8037
(
2007
).
41.
A.
Devia
,
H. A.
Castillo
,
V. J.
Benavides
,
Y. C.
Arango
, and
J. H.
Quintero
,
Mater. Charact.
59
,
105
(
2008
).
42.
S.
Krishnamurthy
,
M.
Montalti
,
M. G.
Wardle
,
M. J.
Shaw
,
P. R.
Briddon
,
K.
Svensson
,
M. R. C.
Hunt
, and
L.
Šiller
,
Phys. Rev. B
70
,
045414
(
2004
).
43.
S. K. R.
Patil
,
N. S.
Mangale
,
S. V.
Khare
, and
S.
Marsillac
,
Thin Solid Films
517
,
824
(
2008
).
44.
R.
Yu
and
X. F.
Zhang
,
Phys. Rev. B
72
,
054103
(
2005
).
45.
M. B.
Kanoun
and
S.
Goumri-Said
,
Phys. Lett. A
362
,
73
(
2007
).
46.
W.
Chen
,
J. S.
Tse
, and
J. Z.
Jiang
,
Solid State Commun.
150
,
181
(
2010
).
47.
A. C.
Cefalas
,
J.
Kovać
,
E.
Sarantopoulou
,
G.
Dražić
,
Z.
Kollia
, and
S.
Kobe
,
Surf. Interface Anal.
40
,
364
(
2008
).
48.
A. C.
Cefalas
,
S.
Kobe
,
E.
Sarantopoulou
,
Z.
Samardžija
,
M.
Janeva
,
G.
Dražic
, and
Z.
Kollia
,
Phys. Status Solidi A
205
,
1465
(
2008
).
49.
E.
Sarantopoulou
,
Z.
Kollia
,
G.
Dražic
,
S.
Kobe
, and
N. S.
Antonakakis
,
Nanoscale Res. Lett.
6
,
387
(
2011
).
50.
I. N.
Sneddon
,
Int. J. Eng. Sci.
3
,
47
(
1965
).
51.
P.
Várguez
,
F.
Avilés
, and
A. I.
Oliva
,
Surf. Coat. Technol.
202
,
1556
(
2008
).
52.
L.
Wang
,
C.
Liang
, and
B. C.
Prorok
,
Thin Solid Films
515
,
7911
(
2007
).
53.
H. D.
Espinosa
and
B. C.
Prorok
,
J. Mater. Sci.
38
,
4125
(
2003
).
54.
D.
Tranchida
,
Z.
Kiflie
, and
S.
Piccarolo
,
Modern Research and Educational Topics in Microscopy
, edited by
A.
Méndez-Vilas
and
J.
Díaz
(
Formatex
,
Badajoz
,
2007
), Vol.
2
, pp.
737
746
.
55.
D. M.
Schaefer
,
A.
Patil
,
R. P.
Andres
, and
R.
Reifenberger
,
Appl. Phys. Lett.
63
,
1492
(
1993
).
56.
F. A.
Padovani
and
R.
Stratton
,
Solid-State Electron.
9
,
695
(
1966
).
57.
R.
Kraya
,
L. Y.
Kraya
, and
D. A.
Bonnell
,
Nano Lett.
10
,
1224
(
2010
).
58.
K.
Takarabe
,
T.
Nishino
, and
Y.
Hamakawa
,
Jpn. J. Appl. Phys., Part 1
18
,
107
(
1979
).
59.
F.
Hernandez-Ramirez
,
A.
Tarancon
,
O.
Casals
,
E.
Pellicer
,
J.
Rodriguez
,
A.
Romano-Rodriguez
,
J. R.
Morante
,
S.
Barth
, and
S.
Mathur
,
Phys. Rev. B
76
,
085429
(
2007
).
60.
A. A.
Pomarico
,
D.
Huang
,
J.
Dickinson
,
A. A.
Baski
,
R.
Cingolani
,
H.
Morkoç
, and
R.
Molnar
,
Appl. Phys. Lett.
82
,
1890
(
2003
).
61.
Z. Y.
Zhang
,
C. H.
Jin
,
X. L.
Liang
,
Q.
Chen
, and
L. M.
Peng
,
Appl. Phys. Lett.
88
,
073102
(
2006
).
62.
M.
Mehbod
,
W.
Thijs
, and
Y.
Bruynseraede
,
Phys. Status Solidi A
32
,
203
(
1975
).
63.
C. Y.
Ng
,
T. P.
Chen
,
H. W.
Lau
,
Y.
Liu
,
M. S.
Tse
,
O. K.
Tan
, and
V. S. W.
Lim
,
Appl. Phys. Lett.
85
,
2941
(
2004
).
64.
D. M.
Schaadt
,
E. T.
Yu
,
S.
Sankar
, and
A. E.
Berkowitz
,
Appl. Phys. Lett.
74
,
472
(
1999
).
65.
J. Y.
Yang
,
J. H.
Kim
,
J. S.
Lee
,
S. K.
Min
,
H. J.
Kim
,
K. L.
Wang
, and
J. P.
Hong
,
Ultramicroscopy
108
,
1215
(
2008
).
66.
C.
Riedel
,
R.
Arinero
,
P.
Tordjeman
,
G.
Lévêque
,
G. A.
Schwartz
,
A.
Alegria
, and
J.
Colmenero
,
Phys. Rev. E
81
,
010801
R
(
2010
).
67.
C.
Riedel
,
A.
Alegria
,
R.
Arinero
,
J.
Colmenero
, and
J. J.
Sáenz
,
Nanotechnology
22
,
345702
(
2011
).
68.
K. M.
Jones
,
P.
Visconti
,
F.
Yun
,
A. A.
Baski
, and
H.
Morkoç
,
Appl. Phys. Lett.
78
,
2497
(
2001
).
You do not currently have access to this content.