We investigate the influence of crystallographic orientation and anisotropy on local phonon density of states, phonon transmissivity, and Kapitza conductance at interfaces between Lennard-Jones solids via classical molecular dynamics simulations. In agreement with prior works, we find that the Kapitza conductance at an interface between two face-centered cubic materials is independent of crystallographic orientation. On the other hand, at an interface between a face-centered cubic material and a tetragonal material, the Kapitza conductance is strongly dependent on the relative orientation of the tetragonal material, albeit this dependence is subject to the overlap in vibrational spectra of the cubic and tetragonal materials. Furthermore, we show that interactions between acoustic phonons in the cubic material and optical phonons in the tetragonal material can lead to the interface exhibiting greater “thermal anisotropy” as compared to that of the constituent materials. Finally, it is noted that the relative match or mismatch between the Debye temperatures of two materials comprising an interface does not serve an accurate gauge of the efficiency of interfacial thermal transport when those materials have different crystal structures.

2.
P. L.
Kapitza
,
Phys. Rev.
60
,
354
(
1941
).
3.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
4.
R. J.
Stevens
,
A. N.
Smith
, and
P. M.
Norris
,
J. Heat Transfer
127
,
315
(
2005
).
5.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
50
,
3977
(
2007
).
6.
P. E.
Hopkins
,
P. M.
Norris
, and
R. J.
Stevens
,
J. Heat Transfer
130
,
022401
(
2008
).
7.
P. M.
Norris
and
P. E.
Hopkins
,
J. Heat Transfer
131
,
043207
(
2009
).
8.
R. M.
Costescu
,
M. A.
Wall
, and
D. G.
Cahill
,
Phys. Rev. B
67
,
054302
(
2003
).
9.
P. E.
Hopkins
,
P. M.
Norris
,
R. J.
Stevens
,
T. E.
Beechem
, and
S.
Graham
,
J. Heat Transfer
130
,
062402
(
2008
).
10.
Y.
Xu
,
R.
Kato
, and
M.
Goto
,
J. Appl. Phys.
108
,
104317
(
2010
).
11.
P. E.
Hopkins
,
J. C.
Duda
,
S. P.
Clark
,
C. P.
Hains
,
T. J.
Rotter
,
L. M.
Phinney
, and
G.
Balakrishnan
,
Appl. Phys. Lett.
98
,
161913
(
2011
).
12.
P. E.
Hopkins
,
J. C.
Duda
,
C. W.
Petz
, and
J. A.
Floro
,
Phys. Rev. B
84
,
035438
(
2011
).
13.
T. S.
English
,
J. C.
Duda
,
J. L.
Smoyer
,
D. A.
Jordan
,
P. M.
Norris
, and
L. V.
Zhigilei
,
Phys. Rev. B
85
,
035438
(
2012
).
14.
J. C.
Duda
and
P. E.
Hopkins
,
Appl. Phys. Lett.
100
,
111602
(
2012
).
15.
M.
Hu
,
P.
Keblinski
, and
P. K.
Schelling
,
Phys. Rev. B
79
,
104305
(
2009
).
16.
K. C.
Collins
,
S.
Chen
, and
G.
Chen
,
Appl. Phys. Lett.
97
,
083102
(
2010
).
17.
Z.-Y.
Ong
and
E.
Pop
,
Phys. Rev. B
81
,
155408
(
2010
).
18.
Y.
Wang
and
P.
Keblinski
,
Appl. Phys. Lett.
99
,
073112
(
2011
).
19.
J. C.
Duda
,
T. S.
English
,
E. S.
Piekos
,
W. A.
Soffa
,
L. V.
Zhigilei
, and
P. E.
Hopkins
,
Phys. Rev. B
84
,
193301
(
2011
).
20.
M.
Shen
,
W. J.
Evans
,
D.
Cahill
, and
P.
Keblinski
,
Phys. Rev. B
84
,
195432
(
2011
).
21.
P. E.
Hopkins
,
M.
Baraket
,
E. V.
Barnat
,
T. E.
Beechem
,
S. P.
Kearney
,
J. C.
Duda
,
J. T.
Robinson
, and
S. G.
Walton
,
Nano Lett.
12
,
590
(
2012
).
22.
G.
Chen
,
J. Heat Transfer
119
,
220
(
1997
).
24.
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
107
,
024317
(
2010
).
25.
D. P.
Sellan
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
108
,
113524
(
2010
).
26.
A. J. H.
McGaughey
,
E. S.
Landry
,
D. P.
Sellan
, and
C. H.
Amon
,
Appl. Phys. Lett.
99
,
131904
(
2011
).
27.
28.
R.
Prasher
,
Phys. Rev. B
77
,
075424
(
2008
).
29.
J. C.
Duda
,
J. L.
Smoyer
,
P. M.
Norris
, and
P. E.
Hopkins
,
Appl. Phys. Lett.
95
,
031912
(
2009
).
30.
J.
Hirotani
,
T.
Ikuta
,
T.
Nishiyama
, and
K.
Takahashi
,
Nanotechnology
22
,
315702
(
2011
).
31.
P. E.
Hopkins
,
T.
Beechem
,
J. C.
Duda
,
K.
Hattar
,
J. F.
Ihlefeld
,
M. A.
Rodriguez
, and
E. S.
Piekos
,
Phys. Rev. B
84
,
125408
(
2011
).
32.
D. V.
Matyushov
and
R.
Schmid
,
J. Chem. Phys.
104
,
8627
(
1996
).
33.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
34.
E. S.
Landry
,
M. I.
Hussein
, and
A. J. H.
McGaughey
,
Phys. Rev. B
77
,
184302
(
2008
).
35.
E. S.
Landry
and
A. J. H.
McGaughey
,
Phys. Rev. B
79
,
075316
(
2009
).
36.
J. C.
Duda
,
T. S.
English
,
D. A.
Jordan
,
P. M.
Norris
, and
W. A.
Soffa
,
J. Phys.: Condens. Matter
23
,
205401
(
2011
).
37.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon
,
Oxford
,
1990
).
38.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
39.
D. S.
Ivanov
and
L. V.
Zhigilei
,
Phys. Rev. B
68
,
064114
(
2003
).
40.
A.
Ward
and
D. A.
Broido
,
Phys. Rev. B
81
,
085205
(
2010
).
41.
S. Y.
Ren
and
J. D.
Dow
,
Phys. Rev. B
25
,
3750
(
1982
).
42.
M. V.
Simkin
and
G. D.
Mahan
,
Phys. Rev. Lett.
84
,
927
(
2000
).
43.
C.
Kimmer
,
S.
Aubry
,
A.
Skye
, and
P. K.
Schelling
,
Phys. Rev. B
75
,
144105
(
2007
).
44.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2002
).
You do not currently have access to this content.