Smart textiles research represents a new model for generating creative and novel solutions for integrating electronics into unusual environments and will result in new discoveries that push the boundaries of science forward. A key driver for smart textiles research is the fact that both textile and electronics fabrication processes are capable of functionalizing large-area surfaces at very high speeds. In this article we review the history of smart textiles development, introducing the main trends and technological challenges faced in this field. Then, we identify key challenges that are the focus of ongoing research. We then proceed to discuss fundamentals of smart textiles: textile fabrication methods and textile interconnect lines, textile sensor, and output device components and integration of commercial components into textile architectures. Next we discuss representative smart textile systems and finally provide our outlook over the field and a prediction for the future.

1.
J. L.
Dorrity
and
G.
Vachtsevanos
, “
On-line defect detection for weaving systems
,” in Proceedings of IEEE 1996 Annual Textile, Fiber and Thin Film Industry Technical Conference, 15–16 May 1996, pp.
1
6
.
2.
R.
Paradiso
,
G.
Loriga
,
N.
Taccini
,
A.
Gemignani
, and
B.
Ghelarducci
, “
WEALTHY – A wearable healthcare system: New frontier on e-textile
,”
J. Telecommun. Information Technol.
4
,
105
113
(
2005
).
3.
M.-H.
Cheng
,
L.-C.
Chen
,
Y.-C.
Hung
, and
C. M.
Yang
, “
A real-time maximum-likelihood heart-rate estimator for wearable textile sensors
,” in EMBS 2008: Proceedings of 30th Annual IEEE EMBS conference,
20–25 August 2008
, pp.
254
257
.
4.
C.
Mattman
,
O.
Amft
,
H.
Harms
,
G.
Tröster
, and
F.
Clemens
, “
Recognizing upper body postures using textile strain sensors
,” in Proceedings of 11th International Symposium on Wearable Computers (ISWC 07),
11–13 October 2007
, pp.
29
36
.
5.
F.
Axisa
,
A.
Dittmar
, and
G.
Delhomme
, “
Smart clothes for the monitoring in real time and conditions of physiological, emotional and sensorial reactions of human
,” in Proceedings of the 25th Annual International Conference of the IEEE EMBS,
17–21 September 2003
, Vol. 4, pp.
3744
3747
.
6.
S.
Jung
,
C.
Lauterbach
,
M.
Strasser
, and
W.
Weber
, “
Enabling technologies for disappearing electronics in smart textiles
,” in Proceedings of the 2003 IEEE International Solid-State Circuits Conference,
26–29 February 2003
, pp.
1
8
.
7.
L.
Van Langenhove
and
C.
Hertleer
, “
Smart clothing: A new life
,”
Int. J. Clothing Sci. Technol.
16
,
63
72
(
2004
).
8.
D.
Marculescu
,
R.
Marculescu
,
N. H.
Zamora
,
P.
Stanley-Marbell
,
P. K.
Khosla
,
S.
Park
,
S.
Jayaraman
,
S.
Jung
,
C.
Lauterbach
,
W.
Weber
,
T.
Kirstein
,
D.
Cottet
,
J.
Grzyb
,
G.
Tröster
,
M.
Jones
,
T.
Martin
, and
Z.
Nakad
, “
Electronic textiles: A platform for pervasive computing
,”
Proc. IEEE
91
,
1995
2018
(
2003
).
9.
S.
Wagner
,
E.
Bonderover
,
W. B.
Jordan
, and
J. C.
Sturm
, “
Electrotextiles: Concepts and challenges
,”
Int. J. High Speed Electron. Syst.
12
,
391
399
(
2002
).
10.
O.
Cakmakci
,
M.
Koyuncu
,
M.
Eber-Koyuncu
, and
E.
Duriau
, “
Fiber computing
,” in Proceedings of the Workshop on Distributed and Disappearing User Interfaces in Ubiquitous Computing, Computer-Human Interaction (CHI),
31 March–April 5 2001
, pp.
1
7
.
11.
J.
Meyer
,
P.
Lukowicz
, and
G.
Tröster
, “
Textile pressure sensor for muscle activity and motion detection
,” in Proceedings 10th IEEE International Symposium on Wearable Computers,
11–14 October 2006
, pp.
69
72
.
12.
D.
Fishlock
, “
Doctor volts [Electrotherapy]
,”
IEEE Rev.
47
,
23
28
(
2001
).
13.
E. O.
Thorpe
, “
The invention of the first wearable computer
,” in Proceedings of 2nd International Symposium on Wearable Computers 1998. Digest of Papers,
19–20 October 1998
, pp.
4
8
.
14.
S.
Park
,
K.
Mackenzie
, and
S.
Jayaraman
, “
The wearable motherboard: A framework for personalized mobile information processing (PMIP)
,” in Proceedings of the 39th Annual Design Automation Conference (DAC 02),
2002
, Vol. 11.2, pp.
170
174
.
15.
G. F.
Eichinger
,
K.
Baumann
,
T.
Martin
, and
M.
Jones
, “
Using a PCB layout tool to create embroidered circuits
,” in Proceedings of the 11th IEEE International Symposium on Wearable Computers (ISWC ‘07),
11–13 October 2007
, pp.
105
106
.
16.
E. R.
Post
,
M.
Orth
,
P. R.
Russo
, and
N.
Gershenfeld
, “
E-broidery: Design and fabrication of textile-based computing
,”
IBM Syst. J.
39
,
840
860
(
2000
).
17.
M.
Hamedi
,
R.
Forchheimer
, and
O.
Inganäs
, “
Towards woven logic from organic electronic fibers
,”
Nat. Mater.
6
,
357
362
(
2007
).
18.
E.
Bonderover
and
S.
Wagner
, “
A woven inverter circuit for e-textile applications
,”
IEEE Electron Device Lett.
25
,
295
297
(
2004
).
19.
See http://www.ifmachines.com/ for “Amazing soft switches.”
20.
R.
Vieroth
,
T.
Löher
,
M.
Seckel
,
C.
Dils
,
C.
Kallmayer
,
A.
Ostmann
, and
H.
Reichl
, “
Stretchable circuit board technology and application
,” in Proceedings of 2009 International Symposium on Wearable Computers (ISWC ‘09),
4–7 September 2009
, pp.
33
36
.
21.
See http://www.eleksen.com/assets/PDFs/nc_growingbusiness_Eleksen.pdf for “Eleksen FUSE PR, Growing Business.”
22.
K. H.
Cherenack
,
C.
Zysset
,
T.
Kinkeldei
,
N.
Münzenrieder
, and
G.
Tröster
, “
Woven electronic fibers with sensing and display functions for smart textiles
,”
Adv. Mater.
22
,
5178
5182
(
2010
).
23.
R. M.
Crow
and
M. M.
Dewar
, “
Stresses in clothing as related to seam strength
,”
Textile Res. J.
56
,
467
473
(
1986
).
24.
C.
Mattman
,
T.
Kirstein
, and
G.
Tröster
, “
A method to measure elongations of clothing
,” in Proceedings of the 1st International Conference on Intelligent Ambience and Well-being (Ambience05),
19–20 September 2005
, pp.
3719
3732
.
25.
See http://extra.shu.ac.uk/dac/philips.pdf for “Philips smart connections clothing.”
26.
S.
Coyle
,
Y.
Wu
,
K.-T.
Lau
,
D.
De Rossi
,
G.
Wallace
, and
D.
Diamond
, “
Smart nanotextiles: A review of materials and applications
,”
MRS Bull.
32
,
434
442
(
2007
).
27.
T.
Suga
,
H.
Konishi
, and
H.
Nishide
, “
Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery
,”
Chem. Commun.
17
,
1730
1732
(
2007
).
28.
V. L.
Pushparaj
,
M. M.
Shaijumon
,
A.
Kumar
,
S.
Murugesan
,
L.
Ci
,
R.
Vajtai
,
R. J.
Linhardt
,
O.
Nalamasu
, and
P. M.
Ajayan
, “
Flexible energy storage devices based on nanocomposite paper
,”
Proc. Natl. Acad. Sci. U.S.A.
104
,
13574
13577
(
2007
).
29.
K. B.
Lee
, “
Urine-activated paper batteries for biosystems
,”
J. Micromech. Microeng.
15
,
S210
S214
(
2005
).
30.
M.
Kaltenbrunner
,
G.
Kettlgruber
,
C.
Siket
,
R.
Schwödiauer
, and
S.
Bauer
, “
Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics
,”
Adv. Mater.
22
,
2065
2067
(
2010
).
31.
D. N.
Futaba
,
K.
Hata
,
T.
Yamada
,
T.
Hiraoka
,
Y.
Hayamizu
,
Y.
Kakudate
,
O.
Tanaike
,
H.
Hatori
,
M.
Yumura
, and
S.
Iijima
, “
Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
,”
Nat. Mater.
5
,
987
994
(
2006
).
32.
M.
Pagliaro
,
R.
Ciriminna
, and
G.
Palmisano
, “
Flexible solar cells
,”
ChemSusChem
1
,
880
891
(
2008
).
33.
J.
Yoon
,
A. J.
Baca
,
S -Il.
Park
,
P.
Elvikis
,
J. B.
Geddes
,
L.
Li
,
R. H.
Kim
,
J.
Xiao
,
S.
Wang
,
T -H.
Kim
,
M. J.
Motala
,
B. Y.
Ahn
,
E. B.
Duoss
,
J. A.
Lewis
,
R. G.
Nuzzo
,
P. M.
Ferreira
,
Y.
Huang
,
A.
Rockett
, and
J. A.
Rogers
, “
Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs
,”
Nat. Mater.
7
,
907
915
(
2008
).
34.
M. A.
Hanson
,
H. C.
Powell
,
A. T.
Barth
,
K.
Ringgenberg
,
B. H.
Calhoun
,
J. H.
Aylor
, and
J.
Lach
, “
Body area sensor networks: Challenges and opportunities
,”
Computer
42
,
58
65
(
2009
).
35.
J. P.
Thomas
,
M. A.
Qidwai
, and
J. C.
Kellogg
, “
Energy scavenging for small-scale unmanned systems
,”
J. Power Sources
159
,
1494
1509
(
2006
).
36.
J.
Zieba
and
M.
Frydrysiak
, “
Textronics – Electrical and electronic textiles. Sensors for breathing frequency measurement
,”
Fibres Textiles Eastern Europe
14
,
43
48
(
2006
).
37.
B.
Ariyatum
and
R.
Holland
, “
A strategic approach to new product development in smart clothing
,”
J. Asian Des. Int. Conf.
1
,
70
80
(
2003
).
38.
39.
D.
Cottet
,
J.
Grzyb
,
T.
Kirstein
, and
G.
Tröster
, “
Electrical characterization of textile transmission lines
,”
IEEE Trans. Adv. Packag.
26
,
182
190
(
2003
).
40.
I.
Locher
and
G.
Tröster
, “
Fundamental building blocks for circuits on textiles
,”
IEEE Trans. Adv. Packag.
30
,
541
550
(
2007
).
41.
T.
Martin
,
M.
Jones
,
J.
Chong
,
M.
Quirk
,
K.
Baumann
, and
L.
Passauer
, “
Design and implementation of an electronic textile jumpsuit
,” in Proceedings of the 2009 International Symposium on Wearable Computers (ISWC ‘09),
4–7 September 2009
, pp.
157
168
.
42.
C.
Randell
,
S.
Baurley
,
M.
Chalmers
, and
H.
Muller
, “
Textile tools for wearable computing
,” in
Proceedings of the 1st International Forum on Applied Wearable Computing (IFAWC 2004)
,
30 August–1 September 2004
.
43.
44.
A.
von Schilling
,
G.
Hemken
, and
S.
Böhm
, “
Kontaktierung von Mikosystemen auf Textilien durch isotrop elektrisch leitfahige Schmelzklebstroffdispersionen (ICHMD)
,” in Proceedings of MikorSystemTechnik Kongress,
12 October 2009
, pp.
1
4
.
45.
P.
Calvert
,
P.
Patra
,
T.-C.
Lo
,
C. H.
Chen
,
A.
Sawhney
, and
A.
Agrawal
, “
Piezoresistive sensors for smart textiles
,” in
Proc. SPIE
6524
,
65241I
1
65241I
8
(
2007
).
46.
G.
Hoffmann
,
C.
Cherif
,
A.
Mountasir
,
K.
Grossmann
,
A.
Mühl
, and
M.
Löser
, “
Machine design for the integral manufacture of textile structures at the ITM
,” in Proceedings of 4th Aachen-Dresden Intermational Textile Conference,
25–26 November 2010
, p.
74
.
47.
S.
Gimpel
,
U.
Mohring
,
H.
Muller
,
A.
Neudeck
, and
W.
Scheibner
, “
Textile-based electronic substrate technology
,”
J. Ind. Textiles
33
,
179
189
(
2004
).
48.
S.
Bielska
,
M.
Sibinski
, and
A.
Lukasik
, “
Polymer temperature sensor for textronic applications
,”
Mater. Sci. Eng. B
165
,
50
52
(
2009
).
49.
C. R.
Merritt
, “
Electronic textile-based sensors and systems for long-term health monitoring
,” Ph.D. dissertation (
North Carolina State University
,
2008
).
51.
Y. Y. F. C.
Vili
, “
Investigating smart textiles based on shape memory materials
,”
Textile Res. J.
77
,
290
300
(
2007
).
52.
BBC News, “Smart shirt rolls up its sleeves,” see http://news.bbc.co.uk/2/hi/europe/1458231.stm.
53.
See http://www.biotex-eu.com for “BIOTEX Bio-sensing textile for health management.”
54.
I.
Locher
,
T.
Kirstein
, and
G.
Tröster
, “
Temperature profile estimation with smart textiles
,” in Proceedings of 1st International Scientific Conference Ambience 05,
19–20 September 2005
, pp.
1
8
.
55.
V.
Koncar
, “
Optical fiber fabric displays
,”
Opt. Photonics News
16
,
40
44
(
2005
).
56.
P.
Lemmens
,
F.
Crompvoets
,
D.
Brokken
,
J.
van den Eerenbeemd
, and
G.-J.
de Vries
, “
A body-conforming tactile jacket to enrich movie viewing
,” in Proceedings of the Third Joint EuroHaptics Conference 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (World Haptics 2009),
18–20 March 2009
, pp.
7
12
.
58.
M.
Engin
,
A.
Demirel
,
E. Z.
Engin
, and
M.
Fedakar
, “
Recent developments and trends in biomedical sensors
,”
Measurement
37
,
173
188
(
2005
).
59.
See http://www.ivt.ntnu.no/ipd/fag/PD9/2003/artikkel/Norstebo.pdf for “Intelligent textiles, soft products.”
60.
F.
Carpi
and
D.
De Rossi
, “
Electroactive polymer-based devices for e-textiles in biomedicine
,”
IEEE Trans. Inf. Technol. Biomed.
9
,
295
318
(
2005
).
61.
M.
Di Rienzo
,
T.
Rizzo
,
G.
Parati
,
G.
Brambilla
,
M.
Ferratinig
, and
P.
Castiglioni
, “
MagIC system: A new textile-based wearable device for biological signal monitoring. applicability in daily life and clinical setting
,” in Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBS) 2005,
23–24 June 2005
, pp.
7167
7169
.
62.
S. H.
Slater
, “
New technology sensor fabrics to monitor health data
,”
Home Healthcare Manage. Pract.
19
,
480
481
(
2007
).
63.
S.
Mondal
, “
Phase change materials for smart textiles – An overview
,”
Appl. Therm. Eng.
28
,
1536
1550
(
2008
).
64.
See http://www.hitech-projects.com/euprojects/myheart/ for “MyHeart project – IST 507816.”
65.
M.
Di Rienzo
,
F.
Rizzo
,
G.
Parati
,
G.
Brambilla
,
M.
Ferratini
, and
P.
Castiglioni
, “
MagIC system: A new textile-based wearable device for biological signal monitoring. Applicability in daily life and clinical setting
,” in Proceedings of 27th Annual International Conference IEEE EMBS,
1–4 September 2005
, Vol. 7, pp.
7167
7169
.
66.
Y.-L.
Yang
,
M.-C.
Chuang
,
S.-L.
Lou
, and
J.
Wang
, “
Thick-film textile-based amperometric sensors and biosensors
,”
Analyst
135
,
1230
1234
(
2010
).
67.
B. S.
Shim
,
W.
Chen
,
C.
Doty
,
C.
Xu
, and
N. A.
Kotov
, “
Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes
,”
Nano Lett.
8
,
4151
4157
(
2008
).
68.
See http://www.biotex-eu.com for “BIOTEX Bio-sensing textile for health management.”
69.
J.
Coosemans
,
B.
Hermans
, and
R.
Puers
, “
Integrating wireless ECG monitoring in textiles
,”
Sens. Output Devices A: Phys.
130–131
,
48
53
(
2006
).
70.
T.
Pola
and
J.
Vanhala
, “
Textile electrodes in ECG measurement
,” in The 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007,
3–6 December 2007
, pp.
635
639
.
71.
J.
Luprano
, “
Bio-sensing textile for medical monitoring applications
,”
Adv. Sci. Technol.
57
,
257
265
(
2008
).
72.
M.
Rothmaier
,
M. P.
Luong
, and
F.
Clemens
, “
Textile pressure sensor made of flexible plastic optical fibers
,”
Sensors
8
,
4318
4329
(
2008
).
73.
M. A.
El-Sherif
,
J.
Yuan
, and
A.
Macdiarmid
, “
Fiber optic sensors and smart fabrics
,”
J. Intell. Mater. Syst. Struct.
11
,
407
414
(
2000
).
74.
H.
Wang
,
D.
Peng
,
W.
Wang
,
H.
Sharif
,
H.-H.
Chen
, and
A.
Khoynezhad
, “
Resource-aware secure ECG healthcare monitoring through body sensor networks
,”
IEEE Wireless Commun.
17
,
12
19
(
2010
).
75.
D.
Kincal
,
A.
Kumar
,
A. D.
Child
, and
J. R.
Reynolds
, “
Conductivity switching in polypyrrole-coated textile fabrics as gas sensors
,”
Synth. Met.
92
,
53
56
(
1998
).
76.
G. E.
Collins
and
L. J.
Buckley
, “
Conductive polymer-coated fabrics for chemical sensing
,”
Synth. Mater.
78
,
93
101
(
1996
).
77.
B.
Ding
,
M.
Wang
,
J.
Yu
, and
G.
Sun
, “
Gas sensors based on electrospun nanofibers
,”
Sensors
9
,
1609
1624
(
2009
).
78.
T.
Radu
,
C.
Fay
,
K.-T.
Lau
,
R.
Waite
, and
D.
Diamond
, “
Wearable sensing application – Carbon dioxide monitoring for emergency personnel using wearable sensors
,” in Proceedings of ICSE 2009 – International Conference on Environmental Systems Engineering,
16–24 May 2009
.
79.
See http://www.nano-tera.ch/projects/308.php for “TWIGS: Textiles with integrated gas sensors.”
80.
J. B.
Lee
and
V.
Subramanian
, “
Weave patterned organic transistors on fiber for e-textiles
,”
IEEE Trans. Electron Devices
52
,
269
275
(
2005
).
81.
K. H.
Cherenack
,
T.
Kinkeldei
,
C.
Zysset
, and
G.
Tröster
, “
Woven thin-film metal interconnects
,”
Electron Device Lett.
31
,
740
742
(
2010
).
82.
L.
Buechley
,
M.
Eisenberg
,
J.
Catchen
, and
A.
Crockett
, “
The LilyPad Arduino: Using computational textiles to investigate engagement, aesthetics and diversity in computer science education
,” in Proceedings of the Twenty-Sixth SIGCHI Conference on Human Factors in Computing Systems (CHI 2008),
5–10 April 2008
, pp.
423
432
.
83.
Y.-T.
Zhang
,
C. Y.
Poon
,
C.-H.
Chan
,
M. W. W.
Tsang
, and
K.-F.
Wu
, “
A health-shirt using e-textile materials for the continuous and cuffless monitoring of arterial blood pressure
,” in Proceedings of the 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors,
4–6 September 2006
, pp.
86
89
.
84.
A.
Harlin
,
M.
Mäkinen
, and
A.
Vuorivirta
, “
Development of poylmeric optical fibre fabrics as illumination elements and textile displays
,”
AUTEX Res. J.
3
,
1
8
(
2003
).
85.
A.
Wakita
and
M.
Shibutani
, “
Mosaic textile: Wearable ambient display with non-emissive color-changing modules
,” in Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology ACE’06,
14–16 June 2006
, Vol. 48, pp.
1
7
.
86.
A.
Toney
,
L.
Dunne
,
B. H.
Thomas
, and
S. P.
Ashdown
, “
A shoulder pad insert vibrotactile display
,” in Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC’03),
18–21 October 2005
, pp.
35
44
.
87.
A. C.
Bedeloglu
,
R.
Koeppe
,
A.
Demir
,
Y.
Bozkurt
, and
N. S.
Sariciftci
, “
Development of energy generating photovoltaic textile structures for smart applications
,”
Fibers Polym.
11
,
378
383
(
2010
).
88.
M. R.
Lee
,
R. D.
Eckert
,
K.
Forberich
,
G.
Dennler
,
C. J.
Brabec
, and
R. A.
Gaudiana
, “
Solar power wires based on organic photovoltaic materials
,”
Science
324
,
232
235
(
2009
).
89.
D.
Jia
and
J.
Liu
, “
Human power-based energy harvesting strategies for mobile electronic devices
,”
Fron. Energy Power Eng. China
3
,
27
46
(
2009
).
90.
I.
Locher
,
M.
Klemm
,
T.
Kirstein
, and
G.
Tröster
, “
Design and characterization of purely textile patch antennas
,”
IEEE Trans. Adv. Packag.
29
,
777
788
(
2006
).
91.
Z.
Nakad
,
M.
Jones
, and
T.
Martin
, “
Communications in electronic textile systems
,” in Proceedings of the 2003 International Conference on Communications in Computing (CIC 2003),
23–26 June 2003
, pp.
37
43
.
92.
H.
Harms
,
O.
Amft
,
D.
Roggen
, and
G.
Tröster
, “
SMASH: A distributed sensing and processing garment for the classification of upper body postures
,” in Proceedings of the third International Conference on Body Area Networks (Bodynets 2008),
17 March 2008
, pp.
1
8
.
93.
See http://www.maggieorth.com/ for “Maggie Orth, PhD Art, Technology, Design.”
94.
See http://www.eleksen.com for ELEKSEN company.
95.
A.
Bonfiglio
,
D.
De Rossi
,
T.
Kirstein
,
I. R.
Locher
,
F.
Mameli
,
R.
Paradiso
, and
G.
Vozzi
, “
Organic field effect transistors for textile applications
,”
IEEE Trans. Inf. Technol. Biomed.
9
,
319
324
(
2005
).
96.
See http://www.lumalive.philips.com/ for Philips Lighting Luminous Textile webpage.
97.
98.
L.
Berglin
, “
Spookies: Combining smart materials and information technology in an interactive toy
,”
Interact. Des. Child.
6
,
17
23
(
2005
).
99.
See http://www.proetex.org/ for “PROETEX Advanced e-textiles for firefighter and civilian victims.”
100.
A.
Lymberis
and
S.
Olsson
, “
Intelligent biomedical clothing for personal health and disease management: State of the art and future vision
,”
Telemed. J. e-Health
9
,
379
386
(
2003
).
101.
F.
Axisa
,
P. M.
Schmitt
,
C.
Gehin
,
G.
Delhomme
,
E.
McAdams
, and
A.
Dittmar
, “
Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention
,”
IEEE Trans. Inf. Technol. Biomed.
9
,
325
336
(
2005
).
102.
See http://www.mateo.ntc.zcu.cz/doc/state.doc for “TeTRInno SmarTex.”
103.
B.
Quinn
,
Futures: Fashion, Design and Technology
(
Berg
,
2010
).
104.
106.
J.
de Coster
, “
Special report: European textile research needs a quantum leap
,”
Textile Asia
2
,
9
10
(
2009
).
107.
See http://www.systex.org/papers for “SYSTEX Database, Systex Platform for Smart Textiles and Wearable Microsystems.”
You do not currently have access to this content.