The formation energies and transition levels of point defects VCu,VIn,VS,InCu, CuIn, and OS in CuInS2 are studied using the hybrid density functional theory. It is found that the Heyd-Scuseria-Ernzerhof method can accurately describe the electronic structure and gives a band gap of 1.40 eV, in good agreement with the experimental value. On the other hand, we conclude that p-type semiconductor CuInS2 can be obtained under sulfur-rich condition with a certain copper and indium content, while n-type semiconductor CuInS2 can be easily obtained under the copper-rich, indium-rich, sulfur-poor, and non-oxygen conditions. These results provide an excellent account for the modification of the structural and electronic properties of CuInS2.

1.
L. S.
Palatnik
and
E. I.
Rogacheva
,
Doklady
12
,
502
(
1967
).
2.
K. J.
Bachmann
,
M.
Fearheiley
,
Y. H.
Shing
, and
N.
Tran
,
Appl. Phys. Lett.
44
,
407
(
1984
).
3.
R.
Noufi
,
R.
Axton
,
C.
Herrington
, and
S. K.
Deb
,
Appl. Phys. Lett.
45
,
668
(
1984
).
4.
B.
Tell
,
J. L.
Shay
, and
H. M.
Kasper
,
J. Appl. Phys.
43
,
2469
(
1972
).
5.
I.
Kaiser
,
K.
Ermst
,
Ch.-H.
Fischer
,
M. Ch.
Lux-Steiner
, and
R.
Könenkamp
,
Jpn. J. Appl. Phys., Part 1
39
,
421
(
2000
).
6.
A.
Soni
,
V.
Gupta
,
C. M.
Arora
,
A.
Dashora
, and
B. L.
Ahuja
,
Sol. Energy
84
,
1481
(
2010
).
7.
M. I.
Alonso
,
K.
Wakita
,
J.
Pascual
,
M.
Garriga
, and
N.
Yamamoto
,
Phys. Rev. B
63
,
075203
(
2001
).
8.
N.
Guezmir
,
J.
Ouerfelli
, and
S.
Belgacem
,
Mater. Chem. Phys.
96
,
116
(
2006
).
9.
A.
Rockett
and
R. W.
Birkmire
,
J. Appl. Phys.
70
,
R81
(
1991
).
10.
T.
Negami
,
Y.
Hashimoto
,
M.
Nishitami
, and
T.
Wada
,
Sol. Energy Mater. Sol. Cells
49
,
343
(
1997
).
11.
J.
Lażewski
,
P. T.
Jochym
, and
K.
Parlinski
,
J. Chem. Phys.
117
,
2726
(
2002
).
12.
J.
Pohl
and
K.
Albe
,
J. Appl. Phys.
108
,
023509
(
2010
).
13.
J.
Vidal
,
S.
Botti
,
P.
Olsson
,
J.-F.
Guillemoles
, and
L.
Reining
,
Phys. Rev. Lett.
104
,
056401
(
2010
).
14.
C.
Bailey
,
L.
Liborio
,
G.
Mallia
,
S.
Tomić
, and
N.
Harrison
,
Phys. Rev. B
81
,
205214
(
2010
).
15.
J.
Heyd
,
G.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
188
,
8207
(
2003
).
16.
J.
Heyd
,
G.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
17.
G.
Kresse
and
J.
Furthmller
,
Phys. Rev. B
54
,
11169
(
1996
).
18.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
19.
C.
Persson
,
Y.-J.
Zhao
,
S.
Lany
, and
A.
Zunger
,
Phys. Rev. B
72
,
035211
(
2005
).
20.
S. B.
Zhang
and
S.-H.
Wei
,
Appl. Phys. Lett.
80
,
1376
(
2002
).
21.
To maintain a stable compound, the sum of chemical potentials of its constituent atoms must equal the heat of formation of the compound, which is a constant. When chemical potentials of two elements are maximal, that of the other element is minimal, corresponding to a “minimum α-poor condition.”
22.
A.
Janotti
and
C.
Van de Walle
,
Phys. Rev. B
76
,
165202
(
2007
).
23.
A.
Alkauskas
,
P.
Broqvist
, and
A.
Pasquarello
,
Phys. Status Solidi B
248
,
775
(
2011
).
24.
L.
Fang
,
D. R.
Li
,
Z. C.
Lu
, and
S. X.
Zhou
,
Sci. Technol. Rev.
25
,
77
(
2007
).
25.
H.
Neumann
,
Phys. Status Solidi A
96
,
K121
(
1986
).
26.
T.
Tinoco
,
A.
Polian
,
D.
Gómez
, and
J.
Itié
,
Phys. Status Solidi B
198
,
433
(
1996
).
27.
S. B.
Zhang
,
S.-H.
Wei
,
A.
Zunger
, and
H.
Katayama-Yoshida
,
Phys. Rev. B
57
,
9642
(
1998
).
28.
A.
Boonchun
and
W. R. L.
Lambrecht
,
Phys. Status Solidi B
248
,
1043
(
2011
).
You do not currently have access to this content.