Modeling of nanoscale electronic devices in water requires the evaluation of the transport properties averaged over the possible configurations of the solvent. They can be obtained from classical molecular dynamics for water confined in the device. A series of classical molecular dynamics simulations is performed to establish a methodology for estimating the average number of water molecules N confined between two static and semi-infinite gold electrodes. Variations in key parameters of the simulations, as well as simulations with non-static infinite gold surfaces of constant area and with anisotropically fluctuating cell dimensions lead to less than 1% discrepancies in the calculated N. Our approach is then applied to a carbon nanotube placed between the gold electrodes. The atomic density profile along the axis separating the slabs shows the typical pattern of confined liquids, irrespective of the presence of the nanotube, while parallel to the slabs the nanotube perturbs the obtained profile.

1.
M.
Ferrari
,
Nat. Rev. Cancer
5
,
161
171
(
2005
).
2.
P. K.
Gupta
,
Trends Biotechnol.
26
,
602
611
(
2008
).
3.
F.
Patolsky
,
G.
Zheng
, and
C. M.
Lieber
,
Anal. Chem.
78
,
4260
4269
(
2006
).
4.
B.
He
,
T. J.
Morrow
, and
C. D.
Keating
,
Curr. Opin. Chem. Biol.
12
,
522
528
(
2008
).
5.
S.
Roy
and
Z.
Gao
,
Nano Today
4
,
318
334
(
2009
).
6.
T. E.
Cheatham
 III
and
B. R.
Brooks
,
Theor. Chim. Acta.
99
,
279
288
(
1998
).
7.
W.
Wang
,
O.
Donini
,
C. M.
Reyes
, and
P. A.
Kollman
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
211
243
(
2001
).
8.
J.
Norberg
and
L.
Nilsson
,
Q. Rev. Biophys.
36
,
257
306
(
2003
).
9.
K.
Johnston
and
V.
Harmandaris
,
J. Phys. Chem. C
115
,
14707
14717
(
2011
).
10.
U. F.
Keyser
,
J. R. Soc. Interface
8
,
1369
1378
(
2011
).
11.
I.
Rungger
,
X.
Chen
,
U.
Schwingenschlögl
, and
S.
Sanvito
,
Phys. Rev. B
81
,
235407
(
2010
).
12.
J. C.
Wang
and
K. A.
Fichthorn
,
J. Chem. Phys.
112
,
8252
8259
(
2000
).
13.
H.
Eslami
,
F.
Mozaffari
,
J.
Moghadasi
, and
F.
Muller-Plathe
,
J. Chem. Phys.
129
,
194702
(
2008
).
14.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
J. Chem. Phys.
106
,
4309
4318
(
1997
).
15.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
1802
(
2005
).
16.
A. D.
MacKerell
 Jr.
,
D.
Bashford
,
M.
Bellott
,
R. L.
Dunbrack
 Jr.
,
J.
Evanseck
,
M. J.
Field
,
S.
Fischer
,
J.
Gao
,
H.
Guo
,
S.
Ha
,
D.
Joseph
,
L.
Kuchnir
,
K.
Kuczera
,
F. T. K.
Lau
,
C.
Mattos
,
S.
Michnick
,
T.
Ngo
,
D. T.
Nguyen
,
B.
Prodhom
,
I. W. E.
Reiher
B.
Roux
,
M.
Schlenkrich
,
J.
Smith
,
R.
Stote
,
J.
Straub
,
M.
Watanabe
,
J.
Wiorkiewicz-Kuczera
,
D.
Yin
, and
M.
Karplus
,
J. Phys. Chem. B
102
,
3586
3616
(
1998
).
17.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
18.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
934
(
1983
).
19.
A. K.
Rappé
,
C. J.
Casewit
,
K. S.
Colwell
,
W. A.
Goddard
 III
, and
W. M.
Skiff
,
J. Am. Chem. Soc.
114
,
10024
10035
(
1992
).
20.
H.
Heinz
,
R. A.
Vaia
,
B. L.
Farmer
, and
R. R.
Naik
,
J. Phys. Chem. C
112
,
17281
17290
(
2008
).
21.
M. R.
Shirts
,
D. L.
Mobley
,
J. D.
Chidera
, and
V. S.
Pande
,
J. Phys. Chem. B
111
,
13052
13063
(
2007
).
22.
P.
Ewald
,
Ann. Phys.
369
,
253
287
(
1921
).
23.
T. A.
Darden
,
D. M.
York
, and
L. G.
Pedersen
,
J. Chem. Phys.
98
,
10089
10092
(
1993
).
24.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
,
J. Chem. Phys.
101
,
4177
4189
(
1994
).
25.
S. E.
Feller
,
Y.
Zhang
,
R. W.
Pastor
, and
B. R.
Brooks
,
J. Chem. Phys.
103
,
4613
4621
(
1995
).
26.
J. A.
Yancey
,
N. A.
Vellore
,
G.
Collier
,
S. J.
Stuart
, and
R. A.
Latour
,
Biointerphases
5
,
85
95
(
2010
).
27.
W.
Smith
and
P. M.
Rodger
, “The pressure in systems with frozen atoms” Collaborative Computational Projects 5 (CCP5) 2002 (http://www.ccp5.ac.uk/infoweb/wsmith22/wsmith22.pdf, accessed: 17/12/2011).
28.
A. R.
Bizzarri
,
G.
Constantini
, and
S.
Cannistraro
,
Biophys. Chem.
106
,
111
123
(
2003
).
29.
J.
Qian
,
R.
Hentschke
, and
W.
Knoll
,
Langmuir
13
,
7092
7098
(
1997
).
30.
Q.
Pu
,
Y.
Leng
,
X.
Zhao
, and
P. T.
Cummings
,
Nanotechnology
18
,
424007
(
2007
).
31.
T. A.
Isgro
,
M.
Sotomayor
, and
E.
Cruz-Chu
, “Case Study: Water and Ice” (http://www.ks.uiuc.edu/Training/CaseStudies/pdfs/water-1.pdf, accessed: 17/12/2011).
32.
R.
Ransing
,
P.
Dyson
,
P. M.
Williams
, and
P. R.
Williams
,
Fluid Properties at nano/meso scale. A numerical treatment
;
Wiley
,
2008
.
33.
J.
Drelich
and
E.
Chibowski
,
Langmuir
26
,
18621
18623
(
2010
).
34.
M. K.
Bernett
and
W. A.
Zisman
,
J. Phys. Chem.
74
,
2309
2312
(
1970
).
35.
T.
Smith
,
J. Colloid Interface Sci.
75
,
51
55
(
1980
).
36.
J. P.
Rothstein
,
Annu. Rev. Fluid Mech.
42
,
89
109
(
2010
).
37.
T. A.
Ho
,
D. V.
Papavassiliou
,
L. L.
Lee
, and
A.
Striolo
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
16170
16175
(
2011
).
38.
J.
Feng
,
R. B.
Pandey
,
R. J.
Berry
,
B. L.
Farmer
,
R. R.
Naik
, and
H.
Heinz
,
Soft Matter
7
,
2113
2120
(
2011
).
39.
B.
Huang
,
Y.
Xia
,
M.
Zhao
,
F.
Li
,
X.
Liu
,
Y.
Ji
, and
C.
Song
,
J. Chem. Phys.
122
,
084708
(
2005
).
You do not currently have access to this content.