This paper is devoted to the analysis of production of free electrons in air by gamma-rays leaking from radioactive materials. A model based on the Klein-Nishina scattering theory is used to calculate scattering cross sections and approximate the electron production rate. The model includes the effects of primary gamma-quanta radiated by the source as well as that scattered in air. Comparison of the model with the mcnpx kinetic code (http://mcnpx.lanl.gov/) in a sample problem shows excellent agreement. The motivation for this research comes from the recently proposed concept of remote detection of concealed radioactive materials [V. L. Granatstein and G. S. Nusinovich, J. Appl. Phys. 108, 063304 (2010)]. The concept is based on the breakdown in air at the focal point of a high-power beam of electromagnetic waves produced by a THz gyrotron with a 10-20μs pulse. The presence of a radioactive material can greatly exceed the production rate of free electrons over the natural background rate. Additional electrons act as seeds to initiate the breakdown and create sufficiently dense plasma at the focal region. The dense plasma can then be remotely detected as an unambiguous effect of the concealed radioactive material.

1.
V. L.
Granatstein
and
G. S.
Nusinovich
,
J. Appl. Phys.
108
,
063304
(
2010
).
2.
A. V.
Gurevich
,
N. D.
Borisov
, and
G. M.
Milikh
,
Physics of Microwave Discharge, Artificially Ionized Regions in the Atmosphere
(
Gordon and Breach, Reading
,
England
,
1997
).
3.
N.
Gopalsami
,
H. T.
Chien
,
A.
Heifetz
,
E. R.
Koehl
, and
A. C.
Raptis
,
Rev. Sci. Instrum.
80
,
084702
(
2009
).
4.
G. S.
Nusinovich
 et al.,
J. Infrared Millim. Terahertz Waves
32
,
380
(
2011
).
5.
G. S.
Nusinovich
,
P.
Sprangle
,
C. A.
Romero-Talamas
, and
V. L.
Granatstein
,
J. Appl. Phys.
109
,
083303
(
2011
).
6.
G. S.
Nusinovich
,
P.
Sprangle
,
V. E.
Semenov
,
D. S.
Dorozhkina
, and
M.
Yu. Glyavin
,
J. Appl. Phys.
111
,
124912
(
2012
).
7.
N. J.
Carron
,
An Introduction to the Passage of Energetic Particles Through Matter
(
Taylor & Francis
,
New York
,
2001
).
8.
Y. S.
Dimant
,
G. S.
Nusinovich
,
P.
Sprangle
,
J.
Penano
,
C. A.
Romero-Talamas
, and
V. L.
Granatstein
, Physics, e-print arXiv:1204.2186 [physics.plasm-ph] (
2012
).
9.
G. F.
Knoll
,
Radiation Detection and Measurement
, 3rd ed. (
Wiley
,
New York
,
2000
).
10.
W. P.
Jesse
and
J.
Sadauskis
,
Phys. Rev.
97
,
1668
(
1955
).
11.
J. M.
Valentine
and
S. C.
Curran
,
Rep. Prog. Phys.
21
,
1
29
(
1958
).
12.
J. R.
Dwyer
and
L. P.
Babich
,
J. Geophys. Res.
116
,
A09301
, doi: (
2011
).
13.
American Institute of Physics Handbook
, 3rd ed., edited by
D. E.
Gray
(
McGraw-Hill
,
New York
,
1972
).
14.
M.
Kusunose
and
F.
Takahara
,
Astrophys. J.
621
,
285
(
2005
).
15.
J.
Foster
,
H.
Krompholz
, and
A.
Neuber
,
Phys. Plasmas
18
,
013502
(
2011
).
16.
J. T.
Krile
and
A. A.
Neuber
,
Appl. Phys. Lett.
98
,
211502
(
2011
).
17.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables
(
Dover
,
1999
).
18.
H.
Rosoff
and
D.
von Winterfeldt
,
Risk Anal.
27
,
533
(
2007
).
You do not currently have access to this content.