We demonstrate the efficacy of nanostructured thin film silicon solar cells to trap and absorb approximately 75% of all sunlight incident (400 nm–1200 nm) with an equivalent bulk thickness of only 1 micron of silicon. This is achieved by sculpting the collection zone into a three-dimensional, simple-cubic-symmetry, photonic crystal consisting of modulated silicon nanowires embedded in SiO2 and sitting on a quartz substrate with no metallic mirrors. A specific modulation of the radius of nanowires provides antireflection, strong light trapping, and back-reflection mechanisms in targeted spectral regions. This modulation is linear at the top of the nano-rods leading to nanocones at the solar cell to air boundary. These silicon nanocones are very good absorbers at short wavelengths and act as broadband coupler to a light-trapping region below at longer wavelengths. In the light trapping region the modulation is periodic to form a simple cubic photonic crystal exhibiting a broad spectrum of strong parallel interface refraction resonances. Here, light incident from most angles is deflected into slow group velocity modes with energy flow nearly parallel to the interface, long dwell times, and strong light intensity enhancement (up to 150 times the incident intensity) in specific regions. Finally, a stronger and chirped modulation of the nanowire underneath provides back-reflection by means of a one-dimensional depth-dependent photonic stop-gap. The possibility of absorbing light at energies below the electronic band gap of silicon is illustrated using a graded index SixGe1x alloy in the bottom section of each nanowire. Each nanowire is amenable to a radial P-N junction for proximal charge carrier separation and efficient collection of photo-generated current.

1.
C.
Gueymard
,
D.
Myers
, and
K.
Emery
, “
Proposed reference irradiance spectra for solar energy systems testing
,”
Sol. Energy
73
(
6
),
443
467
(
2002
).
2.
M.
Green
, “
Thin-film solar cells: Review of materials, technologies and commercial status
,”
J. Mater. Sci.: Mater. Electron.
18
,
15
19
(
2007
).
3.
K.
Catchpole
and
A.
Polman
, “
Plasmonic solar cells
,”
Opt. Express
16
(
26
),
21793
21800
(
2008
).
4.
M.
Green
,
Third Generation Photovoltaics: Advanced Solar Energy Conversion
(
Springer-Verlag
,
2003
).
5.
G.
Conibeer
,
R.
Patterson
,
L.
Huang
,
J.
Guillemoles
,
D.
Konig
,
S.
Shrestha
, and
M.
Green
, “
Modelling of hot carrier solar cell absorbers
,”
Sol. Energy Mater. Sol. Cells
94
(
9
),
1516
1521
(
2010
).
6.
P.
Aliberti
,
Y.
Feng
,
Y.
Takeda
,
S.
Shrestha
,
M.
Green
, and
G.
Conibeer
, “
Investigation of theoretical efficiency limit of hot carriers solar cells with a bulk indium nitride absorber
,”
J. Appl. Phys.
108
,
094507
(
2010
).
7.
D.
König
,
K.
Casalenuovo
,
Y.
Takeda
,
G.
Conibeer
,
J.
Guillemoles
,
R.
Patterson
,
L.
Huang
, and
M.
Green
, “
Hot carrier solar cells: Principles, materials and design
,”
Phys. E: Low-Dimens. Syst. Nanostruct.
42
(
10
),
2862
2866
(
2010
).
8.
T.
Trupke
,
M.
Green
, and
P.
Würfel
, “
Improving solar cell efficiencies by up-conversion of sub-band-gap light
,”
J. Appl. Phys.
92
,
4117
(
2002
).
9.
B.
Richards
and
A.
Shalav
, “
Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion
,”
IEEE Trans. Electron Devices
54
(
10
),
2679
2684
(
2007
).
10.
A.
Shalav
,
B.
Richards
, and
M.
Green
, “
Luminescent layers for enhanced silicon solar cell performance: Up-conversion
,”
Sol. Energy Mater. Sol. Cells
91
(
9
),
829
842
(
2007
).
11.
A.
Deinega
,
I.
Valuev
,
B.
Potapkin
, and
Y.
Lozovik
, “
Minimizing light reflection from dielectric textured surface
,”
J. Opt. Soc. Am. A
28
(
5
),
770
777
(
2011
).
12.
S.
John
, “
Electromagnetic absorption in a disordered medium near a photon mobility edge
,”
Phys. Rev. Lett.
53
(
22
),
2169
2172
(
1984
).
13.
S.
John
, “
Strong localization of photons in certain disordered dielectric superlattices
,”
Phys. Rev. Lett.
58
(
23
),
2486
2489
(
1987
).
14.
G.
Lozano
,
S.
Colodrero
,
O.
Caulier
,
M. E.
Calvo
, and
H.
Mìguez
, “
Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells
,”
J. Phys. Chem. C
114
(
8
),
3681
3687
(
2010
).
15.
P.
Bermel
,
C.
Luo
,
L.
Zeng
,
L. C.
Kimerling
, and
J. D.
Joannopoulos
, “
Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals
,”
Opt. Express
15
(
25
),
16986
17000
(
2007
).
16.
P. G.
O'Brien
,
A.
Chutinan
,
K.
Leong
,
N. P.
Kherani
,
G. A.
Ozin
, and
S.
Zukotynski
, “
Photonic crystal intermediate reflectors for micromorph solar cells: A comparative study
,”
Opt. Express
18
(
5
),
4478
4490
(
2010
).
17.
J. G.
Mutitu
,
S.
Shi
,
C.
Chen
,
T.
Creazzo
,
A.
Barnett
,
C.
Honsberg
, and
D. W.
Prather
, “
Thin film solar cell design based on photonic crystal and diffractive grating structures
,”
Opt. Express
16
(
19
),
15238
15248
(
2008
).
18.
J.
Üpping
,
A.
Bielawny
,
P.
Miclea
, and
R.
Wehrspohn
, “
3D photonic crystals for ultra-light trapping in solar cells
,”
Proc. SPIE
7002
,
23
(
2008
).
19.
T.
Suezaki
,
P.
O'Brien
,
J.
Chen
,
E.
Loso
,
N.
Kherani
, and
G.
Ozin
, “
Tailoring the electrical properties of inverse silicon opals – A step towards optically amplified silicon solar cells
,”
Adv. Mater.
21
(
5
),
559
563
(
2009
).
20.
Y.
Song
,
J.
Yu
, and
Y.
Lee
, “
Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement
,”
Opt. Lett.
35
(
3
),
276
278
(
2010
).
21.
S.
Mallick
,
M.
Agrawal
, and
P.
Peumans
, “
Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells
,”
Opt. Express
18
(
6
),
5691
5706
(
2010
).
22.
J.
Zhu
,
Z.
Yu
,
G. F.
Burkhard
,
C.-M.
Hsu
,
S. T.
Connor
,
Y.
Xu
,
Q.
Wang
,
M.
McGehee
,
S.
Fan
, and
Y.
Cui
, “
Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays
,”
Nano Lett.
9
(
1
),
279
282
(
2009
).
23.
B.
Kayes
,
H.
Atwater
, and
N.
Lewis
, “
Comparison of the device physics principles of planar and radial pn junction nanorod solar cells
,”
J. Appl. Phys.
97
(
11
),
114302
114302
(
2005
).
24.
M. D.
Kelzenberg
,
S. W.
Boettcher
,
J. A.
Petykiewicz
,
D. B.
Turner-Evans
,
M. C.
Putnam
,
E. L.
Warren
,
J.M.
Spurgeon
,
R. M.
Briggs
,
N. S.
Lewis
, and
H. A.
Atwater
, “
Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
,”
Nat. Mater.
9
(
3
),
239
244
(
2010
).
25.
B.
Tian
,
X.
Zheng
,
T.
Kempa
,
Y.
Fang
,
N.
Yu
,
G.
Yu
,
J.
Huang
, and
C.
Lieber
, “
Coaxial silicon nanowires as solar cells and nanoelectronic power sources
,”
Nature (London)
449
(
7164
),
885
889
(
2007
).
26.
J.
Li
,
H.
Yu
,
S.
Wong
,
G.
Zhang
,
X.
Sun
,
P.
Lo
, and
D.
Kwong
, “
Si nanopillar array optimization on Si thin films for solar energy harvesting
,”
Appl. Phys. Lett.
95
,
033102
(
2009
).
27.
V.
Sivakov
,
G.
Andrä
,
A.
Gawlik
,
A.
Berger
,
J.
Plentz
,
F.
Falk
, and
S.
Christiansen
, “
Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters
,”
Nano Lett.
9
(
4
),
1549
1554
(
2009
).
28.
E.
Garnett
and
P.
Yang
, “
Light trapping in silicon nanowire solar cells
,”
Nano Lett.
10
(
3
),
1082
1087
(
2010
).
29.
L.
Hu
and
G.
Chen
, “
Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications
,”
Nano Lett.
7
(
11
),
3249
3252
(
2007
).
30.
N.
Lagos
,
M. M.
Sigalas
, and
D.
Niarchos
, “
The optical absorption of nanowire arrays
,”
Photonics Nanostruct. Fundam. Appl.
9
(
2
), 163–167 (
2011
).
31.
A.
Chutinan
and
S.
John
, “
Light trapping and absorption optimization in certain thin-film photonic crystal architectures
,”
Phys. Rev. A
78
,
023825
(
2008
).
32.
R.
Petit
,
L.
Botten
 et al,
Electromagnetic Theory of Gratings
(
Springer-Verlag
,
Berlin
,
1980
), Vol.
62
.
33.
G.
Demésy
,
F.
Zolla
,
A.
Nicolet
, and
M.
Commandré
, “
Versatile full-vectorial finite element model for crossed gratings
,”
Opt. Lett.
34
(
14
),
2216
2218
(
2009
).
34.
G.
Demésy
,
F.
Zolla
,
A.
Nicolet
, and
M.
Commandré
, “
All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack
,”
J. Opt. Soc. Am. A
27
,
878
889
(
2010
).
35.
A.
Taflove
and
S. H.
Hagness
,
Computational Electrodynamics: The Finite Difference Time-Domain Method
(
Artech House
,
2005
).
36.
A.
Deinega
and
I.
Valuev
, “
Subpixel smoothing for conductive and dispersive media in the FDTD method
,”
Opt. Lett.
32
,
3429
3431
(
2007
).
37.
I.
Valuev
,
A.
Deinega
, and
S.
Belousov
, “
Iterative technique for analysis of periodic structures at oblique incidence in the finite-difference time-domain method
,”
Opt. Lett.
33
,
1491
1493
(
2008
).
38.
A.
Deinega
and
S.
John
, “
Effective optical response of silicon to sunlight in the finite-difference time-domain method
,”
Opt. Lett.
37
,
112
114
(
2012
).
39.
W.
Shockley
and
H.
Queisser
, “
Detailed balance limit of efficiency of p-n junction solar cells
,”
J. Appl. Phys.
32
,
510
(
1961
).
40.
See http://rredc.nrel.gov/solar/spectra/am1.5/ for reference numerical data about the solar spectrum.
41.
E.
Palik
and
G.
Ghosh
,
Handbook of Optical Constants of Solids: Five-Volume Set
(
Academic
,
1998
).
42.
A.
Nicolet
,
S.
Guenneau
,
C.
Geuzaine
, and
F.
Zolla
, “
Modeling of electromagnetic waves in periodic media with finite elements
,”
J. Comput. Appl. Math.
168
,
321
329
(
2004
).
43.
O.
Toader
and
S.
John
, “
Photonic band gap enhancement in frequency-dependent dielectrics
,”
Phys. Rev. E
70
(
4
),
046605
(
2004
).
44.
R.
King
,
D.
Law
,
K.
Edmondson
,
C.
Fetzer
,
G.
Kinsey
,
H.
Yoon
,
R.
Sherif
, and
N.
Karam
, “
40% efficient metamorphic gainp/gainas/ge multijunction solar cells
,”
Appl. Phys. Lett.
90
(
18
),
183516
183516
(
2007
).
45.
N.
Tétreault
,
G.
von Freymann
,
M.
Deubel
,
M.
Hermatschweiler
,
F.
Pérez-Willard
,
S.
John
,
M.
Wegener
, and
G.
Ozin
, “
New route to three-dimensional photonic bandgap materials: Silicon double inversion of polymer templates
,”
Adv. Mater.
18
(
4
),
457
460
(
2006
).
46.
O.
Toader
and
S.
John
, “
Slanted-pore photonic band-gap materials
,”
Phys. Rev. E
71
(
3
),
036605
(
2005
).
47.
A.
Deinega
and
S.
John
, “
Solar power conversion efficiency in modulated silicon nanowire photonic crystals
,”
J. App. Phys.
112
,
074327
(
2012
).
48.
A.
Deinega
and
S.
John
, “
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
,”
Comp. Phys. Comm.
183
,
2128
(
2012
).
49.
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
B. M.
Kayes
,
A.
Michael
,
M. C.
Putnam
,
N. S.
Lewis
, and
H. A.
Atwater
, “
Photovoltaic measurements in single-nanowire silicon solar cells
,”
Nano Lett.
8
(
2
),
710
714
(
2008
).
50.
M. A.
Green
,
Silicon Solar Cells: Advanced Principles & Practice
(
Centre for Photovoltaic Devices and Systems, University of New South Wales
,
1995
).
You do not currently have access to this content.