X-ray photoelectron spectroscopy (XPS) has been used to investigate the thermodynamic stability of Cu layers deposited onto Mn silicate (MnSiO3) barrier layers formed on SiO2 surfaces. Using a fully in situ growth and analysis experimental procedure, it has been shown that ∼1 nm Cu layers do not chemically react with ultra thin (∼2.6 nm) MnSiO3 surfaces following 400 °C annealing, with no evidence for the growth of Cu oxide species, which are known to act as an intermediate step in the Cu diffusion process into silica based dielectrics. The effectiveness of MnSiO3 as a barrier to Cu diffusion following high temperature annealing was also investigated, with electron energy loss spectroscopy suggesting that a ∼2.6 nm MnSiO3 layer prevents Cu diffusion at 400 °C. The chemical composition of a barrier layer formed following the deposition of a partially oxidised Mn (MnOx)/Cu alloy was also investigated using XPS in order to determine if the presence of Cu at the Mn/SiO2 interface during MnSiO3 growth inherently changes the chemical composition of the barrier layer. In contrast to previous publications, it has been shown that Mn oxide species do not form in the barrier region during thermal annealing, with Cu appearing to be chemically inert in the presence of Mn and SiO2.

1.
R.
Gordon
and
H.
Kim
, International patent WO 2009/117670 A2 (24 September
2009
).
2.
3.
Y.
Au
,
Y.
Lin
,
H.
Kim
,
E.
Beh
,
Y.
Liu
, and
R. G.
Gordon
,
J. Electrochem. Soc.
157
,
D
341
(
2010
).
4.
C. J.
Liu
and
J. S.
Chen
,
Appl. Phys. Lett.
80
,
2678
(
2002
).
5.
J.
Iijima
,
Y.
Fujii
, and
J.
Koike
,
J. Vac. Sci. Technol. B
27
,
1963
(
2009
).
6.
S.-M.
Chung
and
J.
Koike
,
J. Vac. Sci. Technol. B
27
,
L
28
(
2009
).
7.
P.
Casey
,
J.
Bogan
,
J. G.
Lozano
,
P. D.
Nellist
, and
G.
Hughes
,
J. Appl. Phys.
110
,
054507
(
2011
).
8.
P.
Casey
,
J.
Bogan
,
B.
Brennan
, and
G.
Hughes
,
Appl. Phys. Lett.
98
,
113508
(
2011
).
9.
O. R.
Rodriguez
,
W.
Cho
,
R.
Saxena
,
J. L.
Plawsky
, and
W. N.
Gill
,
J. Appl. Phys.
98
,
024108
(
2005
).
10.
B. G.
Willis
and
D. V.
Lang
,
Thin Solid Films
467
,
284
(
2004
).
11.
Y.
Otsuka
,
J.
Koike
,
H.
Sako
,
K.
Ishibashi
,
N.
Kawasaki
,
S. M.
Chung
, and
I.
Tanaka
,
Appl. Phys. Lett.
96
,
012101
(
2010
).
12.
J.
Koike
,
M.
Haneda
,
J.
Iijima
,
Y.
Otsuka
,
H.
Sako
, and
K.
Neishi
,
J. Appl. Phys.
102
,
043527
(
2007
).
13.
K.
Barmak
,
C.
Cabral
, Jr.
,
K. P.
Rodbell
, and
J. M. E.
Harper
,
J. Vac. Sci. Technol. B
24
,
2485
(
2006
).
14.
M. J.
Frederick
,
R.
Goswami
, and
G.
Ramanath
,
J. Appl. Phys.
93
,
5966
(
2003
).
15.
M. O.
Krause
and
J. G.
Ferreira
,
J. Phys. B
8
,
12
(
1975
).
16.
U.
Manju
,
D.
Topwal
,
G.
Rossi
, and
I.
Vobornik
,
Phys. Rev. B
82
,
035442
(
2010
).
17.
A. A.
Audi
and
P. M. A.
Sherwood
,
Surf. Interface Anal.
33
,
274
(
2002
).
18.
J.
Koike
and
M.
Wada
,
Appl. Phys. Lett.
87
,
041911
(
2005
).
19.
International Roadmap for Semiconductors, 2011 ed., Interconnects, p. 2.
You do not currently have access to this content.