Bi2Te3 based thermoelectric devices typically use a nickel layer as a diffusion barrier to block the diffusion of solder or copper atoms from the electrode into the thermoelectric material. Previous studies have shown degradation in the efficiency of these thermoelectric devices may be due to the diffusion of the barrier layer into the thermoelectric material. In this work, Ni, Co, Fe, and Mn are intentionally doped into Cu0.01Bi2Te2.7Se0.3 in order to understand their effects on the thermoelectric material. Thermoelectric transport properties including the Seebeck coefficient, thermal conductivity, electrical resistivity, carrier concentration, and carrier mobility of Cu0.01Bi2Te2.7Se0.3 doped with 2 atomic percent M (M = Ni, Co, Fe, Mn) as Cu0.01Bi2Te2.7Se0.3M0.02 are studied in a temperature range of 5-525 K. It is seen that the introduction of Ni, Co, Fe, or Mn does not affect the overall figure of merit, and therefore demonstrates that the diffusion barrier is not leading to device degradation as previously hypothesized. Any of these elements may be used as a diffusion barrier with Co being the best candidate based on both its electrical and mechanical properties.

1.
A. F.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Inforsearch Limited
,
1965
).
2.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
Taylor & Francis
,
New York
,
2006
).
3.
W. S.
Liu
,
X.
Yan
,
G.
Chen
, and
Z. F.
Ren
,
Nano Energy
1
,
42
56
(
2012
).
4.
G. J.
Snyder
and
E. S.
Toberer
,
Nature Mater.
7
,
105
(
2008
).
5.
A. J.
Minnich
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
2
,
466
(
2009
).
6.
G. J.
Snyder
,
J. R.
Lim
,
C. K.
Huang
, and
J. P.
Fleurial
,
Nature
2
,
528
(
2003
).
7.
Y. C.
Lan
,
D. Z.
Wang
,
G.
Chen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
92
,
101910
(
2008
).
8.
O.
Ymashita
,
J. Appl. Phys.
95
,
178
(
2004
).
9.
R. P.
Gupta
,
O. D.
Iyore
,
K.
Xiong
,
J. B.
White
,
K.
Cho
,
H. N.
Alshareef
, and
B. E.
Gnade
,
Electrochem. Solid-State Lett.
12
,
H395
(
2009
).
10.
A.
Singh
,
S.
Bhattacharya
,
C.
Thinaharan
,
D. K.
Aswal
,
S. K.
Gupta
,
J. V.
Yakhmi
, and
K.
Bhanumurthy
,
J. Phys. D
42
,
015502
(
2009
).
11.
V. M.
Sokolova
,
L. D.
Dudkin
, and
L. I.
Petrova
,
Inorg. Mater.
36
,
16
(
2000
).
12.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 84th ed. (
CRC Press
,
Boca Raton
,
2003
).
13.
W. S.
Liu
,
Q.
Zhang
,
Y. C.
Lan
,
S.
Chen
,
X.
Yan
,
Q.
Zhang
,
H.
Wang
,
D. Z.
Wang
,
G.
Chen
, and
Z. F.
Ren
,
Adv. Energy Mater.
1
,
577
(
2011
).
14.
F.
Levy
,
J. Phys. C: Solid State Phys.
13
,
2901
12
(
1980
).
15.
J.
Zhang
,
X. Y.
Qin
,
H. X.
Xin
,
D.
Li
, and
C. J.
Song
,
J. Electron. Mater.
40
,
5
(
2011
).
16.
J.
Yang
,
Q.
Hao
,
H.
Wang
,
Y. C.
Lan
,
Q. Y.
He
,
A.
Minnich
,
D. Z.
Wang
,
J. A.
Harriman
,
V. M.
Varki
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Phys. Rev. B
80
,
115329
(
2009
).
17.
D.
Bishop
,
A.
Heuer
, and
D.
Williams
,
Mater. Res. Bull.
26
,
282
(
2001
).
18.
R. K.
Kupka
,
F.
Bouamran
,
C.
Cremers
, and
S.
Megtert
,
Appl. Surf. Sci.
164
,
97
(
2000
).
19.
R.
Venkatasubramanian
,
E.
Siivola
,
B. C.
O’Quinn
,
K.
Coonley
,
P.
Addepalli
,
M.
Napier
,
T.
Colpitts
, and
M.
Mantini
,
Proceedings of 2003 ACS Symposium on Nanotechnology and the Environment
(New Orleans,
2003
).
20.
C.
Cabral
, Jr.
,
K.
Barmak
,
J.
Gupta
,
L. A.
Clevenger
,
B.
Arcot
,
D. A.
Smith
, and
J. M. E.
Harper
,
J. Vac. Sci. Technol. A
11
,
1435
(
1993
).
You do not currently have access to this content.