The thermal rectification has potential application in the thermal management of electronics and energy saving. This paper investigates the thermal rectification in silicon nanofilm with cone cavity by the non-equilibrium molecular dynamics simulation. The results show that the thermal resistance caused by the cone cavity is on the order of 10−9 m2 KW−1. The thermal resistance of cone cavity differs averagely by about 11% from 300 K to 1100 K when the heat flow direction is turned over. The phonon wave packet dynamic simulations indicate that transverse phonons are generated by the cavity scattering of longitudinal phonon. When the phonon transport direction is reversed, the average transmission coefficient is changed by about 14% in all the frequency range and is regarded as the main reason for the thermal rectification in silicon film with cone cavity. The thermal rectification depends on the aspect ratio of the cone cavity.

1.
N. A.
Roberts
and
D. G.
Walker
,
Int. J. Therm. Sci.
50
,
648
(
2011
).
2.
M.
Terraneo
,
M.
Peyard
, and
G.
Casati
,
Phys. Rev. Lett.
88
,
094302
(
2002
).
3.
B.
Li
,
L.
Wang
, and
G.
Casati
,
Phys. Rev. Lett.
93
,
184301
(
2004
).
4.
B.
Li
,
J.
Lan
, and
L.
Wang
,
Phys. Rev. Lett.
95
,
104302
(
2005
).
5.
B.
Hu
and
L.
Yang
,
Chaos
15
,
015119
(
2005
).
6.
J.
Lan
,
L.
Wang
, and
B.
Li
,
Int. J. Mod. Phys. B
21
,
4013
(
2007
).
7.
C.
Dames
,
J. Heat Transfer
131
,
061301
(
2009
).
8.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
,
Appl. Phys. Lett.
95
,
171905
(
2009
).
9.
D.
Sawaki
,
W.
Kobayashi
,
Y.
Moritomo
, and
I.
Terasaki
,
Appl. Phys. Lett.
98
,
081915
(
2011
).
10.
J.
Hu
,
X.
Ruan
, and
Y. P.
Chen
,
Nano Lett.
9
,
2730
(
2009
).
11.
N.
Yang
,
G.
Zhang
, and
B.
Li
,
Appl. Phys. Lett.
95
,
033107
(
2009
).
12.
N.
Yang
,
G.
Zhang
, and
B.
Li
,
Appl. Phys. Lett.
93
,
243111
(
2008
).
13.
S. C.
Wang
and
X. G.
Liang
,
Int. J. Therm. Sci.
50
,
680
(
2011
).
14.
Y.
Ma
,
Q.
Hao
,
B.
Poudel
,
Y.
Lan
,
B.
Yu
,
D.
Wang
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
8
,
2580
(
2008
).
15.
L. K.
Wagner
and
J. C.
Grossman
,
Phys. Rev. Lett.
101
,
265501
(
2008
).
16.
F.
Müller-Plathe
,
J. Chem. Phys.
106
,
6082
6085
(
1997
).
17.
F.
Müller-Plathe
and
D.
Reith
,
Comput. Theor. Polym. Sci.
9
,
203
(
1999
).
18.
J. R.
Lukes
,
D. Y.
Li
,
X. G.
Liang
, and
C. L.
Tien
,
J. Heat Transfer
122
,
536
(
2000
).
19.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
20.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2002
).
21.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
J. Appl. Phys.
95
,
6082
(
2004
).
22.
Z. T.
Tian
,
B. E.
White
, and
Y.
Sun
, Jr.
,
Appl. Phys. Lett.
96
,
263113
(
2010
).
23.
L.
Sun
and
J. Y.
Murthy
,
J. Heat Transfer
132
,
102403
(
2010
).
24.
K. E.
Goodson
,
O. W.
Kading
,
M.
Rosner
, and
R.
Zachai
,
Appl. Phys. Lett.
66
,
3134
(
1995
).
25.
Q.
Tang
and
Y.
Yao
,
Nanoscale Microscale Thermophys. Eng.
10
,
387
(
2006
).
26.
S. H.
Ju
,
X. G.
Liang
, and
S. C.
Wang
,
J. Phys. D: Appl. Phys.
43
,
085407
(
2010
).
You do not currently have access to this content.