Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.

1.
J.
Pérez-Arantegui
,
J.
Molera
,
A.
Larrea
,
T.
Pradell
,
M.
Vendrell
,
I.
Borgia
,
B. G.
Brunetti
,
F.
Cariati
,
P.
Fermo
,
M.
Mellini
,
A.
Sgamellotti
, and
C.
Viti
Luster pottery from the thirteenth century to the Sixteenth century: a nanostructured metallic thin metallic film
,”
J. Am. Ceram. Soc.
84
(
2
),
442
446
(
2001
).
2.
I.
Borgia
,
B.
Brunetti
,
I.
Mariani
,
A.
Sgamellotti
,
F.
Cariati
,
P.
Fermo
,
M.
Mellini
,
C.
Viti
, and
G.
Padeletti
, “
Heterogeneous distribution of metal nanocrystals in glazes of historical pottery
,”
Appl. Surf. Sci.
185
,
206
216
(
2002
).
3.
S.
Padovani
,
C.
Sada
,
P.
Mazzoldi
,
B.
Brunetti
,
I.
Borgia
,
A.
Sgamellotti
,
A.
Giullvi
,
F.
D'Acapito
, and
G.
Battaglin
, “
Copper in glazes of Renaissance luster pottery: Nanoparticles, ions, and local environment
,”
J. Appl. Phys
.
93
(
12
),
10058
10063
(
2003
).
4.
P.
Colomban
, “
The use of metal nanoparticles to produce yellow, red and iridescent color, from bronze age to present times in luster pottery and glass: Solid state chemistry, spectroscopy and nanostructure
,”
J. Nano Res.
8
,
109
132
(
2009
).
5.
A.
Caiger Smith
,
Luster Pottery
(
New Amsterdam Books
,
New York
,
1991
).
6.
R. B.
Mason
,
Shine Like the Sun: Luster-Painted and Associated Pottery From the Medieval Middle East, Bibliotheca Iranica: Islamic Art and Architecture Vol. 12
(
Mazda
,
Costa Mesa, Canada
,
2004
).
7.
J.
Molera
,
C.
Bayés
,
P.
Roura
,
D.
Crespo
, and
T.
Pradell
, “
Key parameters in the production of medieval luster colors and shines
,”
J. Am. Ceram. Soc.
90
(
7
),
2245
2254
(
2007
).
8.
G.
Padeletti
,
P.
Fermo
,
A.
Bouquillon
,
M.
Aucouturier
, and
F.
Barbe
, “
A new light on the first exemple of lustred majòlica in Italy
,”
Appl. Phys. A
100
,
747
761
(
2010
).
9.
J.
Molera
,
M.
Mesquida
,
J.
Perez-Arantegui
,
T.
Pradell
, and
M.
Vendrell
, “
Luster recipes from a medieval workshop in Paterna
,”
Archaeometry
43
(
4
),
455
460
(
2001
).
10.
U.
Kreijig
and
M.
Vollmer
,
Optical Properties of Metal Cluster
, Springer Series in Materials Science Vol. 25 (
Springer Verlag
,
Berlin
,
1995
).
11.
S.
Padovani
,
I.
Borgia
,
B.
Brunetti
,
A.
Sgamellotti
,
A.
Giullvi
,
F.
D'Acapito
,
P.
Mazzoldi
,
C.
Sada
, and
G.
Battaglin
, “
Silver and copper nanoclusters in the luster decoration of Italian Renaissance pottery: An EXAFS study
,”
Appl. Phys. A
79
(
2
),
229
233
(
2004
).
12.
A. D.
Smith
,
T.
Pradell
,
J.
Roque
,
J.
Molera
,
M.
Vendrell-Saz
,
A. J.
Dent
, and
E.
Pantos
, “
Color variations in 13th century hispanic lustre—An EXAFS study
,”
J. Non-Cryst. Solids
352
,
5353
5361
(
2006
).
13.
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London
203
,
385
(
1904
);
J. C. M.
Garnett
,
Philos. Trans. R. Soc. London
205
,
237
(
1906
).
14.
I.
Farbman
,
O.
Levi
, and
S.
Efrima
, “
Optical response of concentrated colloids of coinage metals in the near-ultraviolet, visible and infrared regions
,”
J. Chem. Phys.
96
(
9
),
6477
6485
(
1992
).
15.
P. E.
Wolf
and
G.
Maret
,
Phys. Rev. Lett.
55
(
24
),
2696
2699
(
1985
).
16.
Y.
Kuga
and
A.
Ishimaro
,
J. Opt. Soc. Am.
1
(
8
),
831
835
(
1984
).
17.
T.
Pradell
,
A.
Climent-Font
,
J.
Molera
,
A.
Zucchiatti
,
M. D.
Ynsa
,
P.
Roura
, and
D.
Crespo
, “
Metallic and non-metallic shine in luster: An elastic ion backscattering study
,”
J. Appl. Phys.
101
(
9
),
103518
(
2007
).
18.
P. C.
Gutierrez
,
T.
Pradell
,
J.
Molera
,
A. D.
Smith
,
A.
Climent-Font
, and
M. S.
Tite
, “
Color and golden shine of silver islamic luster
,”
J. Am. Ceram. Soc.
93
(
8
),
2320
2328
(
2010
).
19.
J.
Roqué
,
J.
Molera
,
P.
Sciau
,
E.
Pantos
, and
A.
Vendrell-Saz
,
J. Eur. Ceram. Soc.
26
,
3813
(
2006
).
20.
C.
Mirguet
,
P.
Frederick
,
P.
Sciau
, and
P.
Colomban
,
Phase Transitions
81
(
2–3
),
253
266
(
2008
).
21.
V.
Reillon
and
S.
Bethier
, “
Modelization of the optical colorimetric properties of lustred ceramics
,”
Appl. Phys. A
83
,
257
265
(
2006
).
22.
P.
Sciau
,
C.
Mirguet
,
C.
Roucau
,
D.
Chabanne
, and
M.
Schvoerer
, “
Double nanoparticle layer in a 12th century lustreware decoration: Accident or technological mastery?
,”
J. Nano Res.
8
,
133
139
(
2009
).
23.
J.
Roqué
,
N. R. J.
Poolton
,
J.
Molera
,
A. D.
Smith
,
E.
Pantos
, and
M.
Vendrell-Saz
, “
X-ray absorption and luminescence properties of metallic copper nanoparticles embedded in a glass matrix
,”
Phys. Status Solidi B
243
,
1337
1346
(
2006
).
24.
A.
Taflove
and
S.
Hagness
,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
, 3rd ed. (
Arctech
,
Norwood, MA
,
2005
).
25.
T.
Pradell
,
J.
Molera
,
E.
Pantos
,
A. D.
Smith
,
C. M.
Martin
, and
A.
Labrador
, “
Temperature resolved reproduction of medieval luster
,”
Appl. Phys. A
90
(
1
),
81
88
(
2008
).
26.
A.
Fluegel
, “
Global model for calculating room-temperature glass density from the composition
,”
J. Am. Ceram. Soc.
90
(
8
),
2622
2625
(
2007
).
27.
A. I.
Priven
and
O. V.
Mazurin
, “
Comparison of methods used for the calculation of density, refractive index and thermal expansion of oxide glasses
,”
Glass. Technol.
44
(
4
),
156
166
(
2003
).
28.
W. K.
Chu
,
J. W.
Mayer
, and
M. A.
Nicolet
,
Backscattering Spectrometry
(
Academic
,
New York
,
1978
).
29.
A.
Climent-Font
,
F.
Pászti
,
G.
García
,
M. T.
Fernández-Jiménez
, and
F.
Agulló
, “
First measurements with the Madrid 5 MV tandem accelerator
,”
Nucl. Instrum. Methods Phys. Res. B
219–220
,
400
404
(
2004
).
30.
C.
Huan-Sheng
,
S.
Hao
,
T.
Jiayong
, and
Y.
Fujia
, “
Cross sections for 170 backscattering of 4He from oxygen in the energy range of 2.0-9.0 MeV
,”
Nucl. Instrum. Methods Phys. Res. B
83
,
449
453
(
1993
).
31.
M.
Mayer
, “
SIMNRA user's guide
,” IPP 9/113,
1997
.
32.
R.
Jarjis
, “
Ion beam archaeometry of Islamic luster glaze
,”
Key Eng. Mater.
132–136
,
1434
1437
(
1997
).
33.
D.
Hélary
, “
Études de couches dorées sur matières vitreuses: Aplications aux tesselles à feuille d'or et aux céramiques glaçurées à décors de lustres dorés
,” Thesis (
Docteur de l'Ecole des Mines de Paris, Spécialité Science et Génie des Matériaux
,
2003
).
34.
G.
Padeletti
,
G. M.
Ingo
,
A.
Bouquillon
,
S.
Pages-Camagne
,
M.
Aucouturier
,
S.
Roeres
, and
P.
Fermo
, “
First-time observation of Mastro Giorgio masterpieces by means of non-destructive techniques
,”
Appl. Phys. A
83
,
475
483
(
2006
).
35.
See http://www.lumerical.com for FDTD Solutions, Lumerical Solutions, Vancouver, Canada.
36.
K.
Yee
,
IEEE Trans. Antennas Propag.
14
(
3
),
302
307
(
1966
).
37.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
New York
,
1998
).
38.
P.
Fredrickx
,
D.
Hélary
,
D.
Schryvers
, and
E.
Darque-ceretti
, “
A TEM study of nanoparticles in lustre glazes
,”
Appl. Phys. A
79
,
283
288
(
2004
).
39.
S.
Torquato
, “
Nearest-neighbor statistics for packing hard spheres and disks
,”
Phys. Rev. E
51
(
4
),
3170
3182
(
1995
).
40.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of noble metals
,”
Phys. Rev. B
6
(
12
),
4370
4379
(
1972
).
41.
R. H.
Magruder
,
S. J.
Robinson
,
C.
Smith
,
A.
Meldrum
,
A.
Halabaica
, and
R. F.
Haglund
, “
Dichroism in Ag nanoparticle composites with bimodal size distribution
,”
J. Appl. Phys.
105
,
024303
1
(
2009
).
You do not currently have access to this content.