Very low density growth of GaAs quantum dots in self-assembled nanoholes created by gallium droplet etching is demonstrated. The emission energy of the quantum dots can be accurately controlled by the GaAs deposition amount, from 1.8 to 1.6 eV, independently of the dot density which can be reproducibly controlled over the range 0.22×108cm2 by the gallium deposition rate. The ensemble full-width-half-maximum is <10meV and single-dot linewidths of 40μeV (limited by our spectral resolution) have been measured. Additionally, shallow mounds on the sample surface allow the buried GaAs/AlGaAs dots to be located. A simple method to reliably predict the emission energy based on the shape of the nanohole is presented.

1.
N. N.
Ledentsov
,
Semicond. Sci. Technol.
26
,
014001
(
2011
).
2.
A. J.
Shields
,
Nat. Photonics
1
,
215
(
2007
).
3.
M.
Ghali
,
K.
Ohtani
,
Y.
Ohno
, and
H.
Ohno
,
Nat. Commun.
3
,
661
(
2012
).
4.
K.
Brunner
,
G.
Abstreiter
,
G.
Böhm
,
G.
Tränkle
, and
G.
Weimann
,
Phys. Rev. Lett.
73
,
1138
(
1994
).
5.
J.
Hours
,
P.
Senellart
,
E.
Peter
,
A.
Cavanna
, and
J.
Block
,
Phys. Rev. B
71
,
161306
(
2005
).
6.
Y.
Sugimoto
,
T.
Saiki
, and
S.
Nomura
,
Appl. Phys. Lett.
93
,
083116
(
2008
).
7.
K.
Watanabe
,
N.
Koguchi
, and
Y.
Gotoh
,
Jpn. J. Appl. Phys., Part 2
39
,
L79
(
2000
).
8.
V.
Mantovani
,
S.
Sanguinetti
,
M.
Guzzi
,
E.
Grilli
,
M.
Gurioli
,
K.
Watanabe
, and
N.
Koguchi
,
J. Appl. Phys.
96
,
4416
(
2004
).
9.
C.
Heyn
,
A.
Stemmann
,
A.
Schramm
,
H.
Welsch
,
W.
Hansen
, and
A.
Nemcsics
,
Phys. Rev. B
76
,
075317
(
2007
).
10.
M.
Abbarchi
,
C. A.
Mastrandrea
,
T.
Kuroda
,
T.
Mano
,
K.
Sakoda
,
N.
Koguchi
,
S.
Sanguinetti
,
A.
Vinattieri
, and
M.
Gurioli
,
Phys. Rev. B
78
,
125321
(
2008
).
11.
T.
Mano
,
T.
Kuroda
,
K.
Kuroda
, and
K.
Sakoda
,
J. Nanophotonics
3
,
0310605
(
2009
).
12.
M.
Jo
,
T.
Mano
, and
K.
Sakoda
,
Cryst. Growth Des.
11
,
4647
(
2011
).
13.
S.
Kiravittaya
,
M.
Benyoucef
,
R.
Zapf-Gottwick
,
A.
Rastelli
, and
O. G.
Schmidt
,
Appl. Phys. Lett.
89
,
233102
(
2006
).
14.
A.
Rastelli
,
S.
Stufler
,
A.
Schliwa
,
R.
Songmuang
,
C.
Manzano
,
G.
Costantini
,
K.
Kern
,
A.
Zrenner
,
D.
Bimberg
, and
O. G.
Schmidt
,
Phys. Rev. Lett.
92
,
166104
(
2004
).
15.
L.
Wang
,
V.
Křápek
,
F.
Ding
,
F.
Horton
,
A.
Schliwa
,
D.
Bimberg
,
A.
Rastelli
, and
O. G.
Schmidt
,
Phys. Rev. B
80
,
085309
(
2009
).
16.
J. D.
Plumhof
,
V.
Křápek
,
L.
Wang
,
A.
Schliwa
,
D.
Bimberg
,
A.
Rastelli
, and
O. G.
Schmidt
,
Phys. Rev. B
81
,
121309
(
2010
).
17.
M.
Benyoucef
,
A.
Rastelli
,
O. G.
Schmidt
,
S. M.
Ulrich
, and
P.
Michler
,
Nanoscale Res. Lett.
1
,
172
(
2006
).
18.
C.
Heyn
,
A.
Stemmann
,
T.
Köppen
,
C.
Strelow
,
T.
Kipp
,
M.
Grave
,
S.
Mendach
, and
W.
Hansen
,
Appl. Phys. Lett.
95
,
173110
(
2009
).
19.
C.
Heyn
,
M.
Klingbeil
,
C.
Strelow
,
A.
Stemmann
,
S.
Mendach
, and
W.
Hansen
,
Nanoscale Res. Lett.
5
,
1633
(
2010
).
20.
V.
Polojärvi
,
A.
Schramm
,
M.
Guina
,
A.
Stemmann
, and
C.
Heyn
,
Nanotechnology
22
,
105603
(
2011
).
21.
M.
Pfeiffer
,
K.
Lindfors
,
C.
Wolpert
,
P.
Atkinson
,
M.
Benyoucef
,
A.
Rastelli
,
O. G.
Schmidt
,
H.
Giessen
, and
M.
Lippitz
,
Nano Lett.
10
,
4555
(
2010
).
22.
S.
Kumar
,
R.
Trotta
,
E.
Zallo
,
J. D.
Plumhof
,
P.
Atkinson
,
A.
Rastelli
, and
O. G.
Schmidt
,
Appl. Phys. Lett.
99
,
161118
(
2011
).
23.
J.
Osaka
,
N.
Inoue
,
Y.
Mada
,
K.
Yamada
, and
K.
Wada
,
J. Cryst. Growth
99
,
120
(
1990
).
24.
T.
Isu
,
M.
Hata
, and
A.
Watanabe
,
J. Cryst. Growth
111
,
210
(
1991
).
25.
P.
Alonso-González
,
J.
Martín-Sánchez
,
Y.
González
,
B.
Alén
,
D.
Fuster
, and
L.
González
,
Cryst. Growth Des.
9
,
2525
(
2009
).
26.
E. S.
Tok
,
J. H.
Neave
,
J.
Zhang
,
B. A.
Joyce
, and
T. S.
Jones
,
Surf. Sci.
374
,
397
(
1997
).
27.
J. H.
Neave
,
B. A.
Joyce
, and
P. J.
Dobson
,
Appl. Phys. A
34
,
179
(
1984
).
28.
C.
Heyn
,
A.
Stemmann
, and
W.
Hansen
,
Appl. Phys. Lett.
94
,
183113
(
2009
).
29.
J. W.
Faust
,
A.
Sagar
, and
H. F.
John
,
J. Electrochem. Soc.
109
,
824
(
1962
).
30.
Z. M.
Wang
,
B. L.
Liang
,
K. A.
Sablon
, and
G. J.
Salamo
,
Appl. Phys. Lett.
90
,
113120
(
2007
).
31.
T.
Suzuki
and
T.
Nishinaga
,
J. Cryst. Growth
142
,
49
(
1994
).
32.
N.
Inoue
,
J. Cryst. Growth
111
,
75
(
1991
).
33.
C.
Heyn
,
Phys. Rev. B
83
,
165302
(
2011
).
34.
J. R.
Arthur
,
J. Phys. Chem. Solids
28
,
2257
(
1967
).
35.
J. A.
Venables
,
Philos. Mag.
27
,
697
(
1973
).
36.
T.
Suzuki
and
T.
Nishinaga
,
J. Cryst. Growth
142
,
61
(
1994
).
37.
D. P.
Miller
,
J. P.
Harper
, and
T. R.
Perry
,
J. Electrochem. Soc.
108
,
1123
(
1961
).
38.
W. H.
Hoather
,
Proc. Phys. Soc. London
48
,
699
(
1936
).
39.
U.
König
and
W.
Keck
,
J. Electrochem. Soc.
130
,
685
(
1983
).
40.
E. C.
LeRu
,
J.
Fack
, and
R.
Murray
,
Phys. Rev. B
67
,
245318
(
2003
).
41.
L. O.
Mereni
,
V.
Dimastrodonato
,
R. J.
Young
, and
E.
Pelucchi
,
Appl. Phys. Lett.
94
,
223121
(
2009
).
42.
S.
Koshiba
,
Y.
Nakamura
,
M.
Tsuchiya
,
H.
Noge
,
H.
Kano
,
Y.
Nagamune
,
T.
Noda
, and
H.
Sakaki
,
J. Appl. Phys.
76
,
4138
(
1994
).
You do not currently have access to this content.