Thin film metallic-glasses (TFMGs) are a promising structural material for fabricating the next generation of micro- and nano-devices; however, a comprehensive study is still lacking today for understanding their mechanical behaviors. In this article, we present a systematic study on the Zr53Cu29Al12Ni6 TFMGs with varying thicknesses. Other than the intrinsic factor of structural amorphousness, our study pinpoints other extrinsic variables that could affect the hardness and yield strength of the TFMGs. Furthermore, the experimental results from microcompression show that the plastic flow in the TFMG-based micropillars exhibit strong sample size-and-shape dependence, which manifests as a smooth plastic deformation transition from the inhomogeneous to homogeneous mode when the TFMG-based micropillars with a submicron-scale film thickness are deformed into the shape of a low aspect ratio.

1.
M. F.
Ashby
and
A. L.
Greer
,
“Metallic glasses as structural materials,”
Scr. Mater.
54
,
321
326
(
2006
).
2.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
“Mechanical behavior of amorphous alloys,”
Acta Mater.
55
(
12
),
4067
4109
(
2007
).
3.
H.
Guo
,
P. F.
Yan
,
Y. B.
Wang
,
J.
Tan
,
Z. F.
Zhang
,
M. L.
Sui
, and
E.
Ma
,
“Tensile ductility and necking of metallic glass,”
Nature Mater.
6
(
10
),
735
739
(
2007
).
4.
D.
Jang
and
J. R
Greer
,
“Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses,”
Nature Mater.
9
(
3
),
215
219
(
2010
).
5.
J. C.
Ye
,
J.
Lu
,
Y.
Yang
, and
P. K.
Liaw
,
“Study of the intrinsic ductile to brittle transition mechanism of metallic glasses,”
Acta Mater.
57
(
20
),
6037
6046
(
2009
).
6.
Y.
Yang
,
J. C.
Ye
,
J.
Lu
,
P. K.
Liaw
, and
C. T.
Liu
,
“Characteristic length scales governing plasticity/brittleness of bulk metallic glasses at ambient temperature,”
Appl. Phys. Lett.
96
(
1
),
011905
(
2010
).
7.
Y.
Yang
and
C. T.
Liu
,
“Size effect on stability of shear band propagation in bulk metallic glasses: An overview,”
J. Mater. Sci.
47
,
55
67
(
2012
).
8.
Y.
Yang
,
J. C.
Ye
,
J.
Lu
,
Y. F.
Gao
, and
P. K.
Liaw
,
“Metallic glasses: Gaining plasticity for microsystems,”
JOM-US
62
(
2
),
93
98
(
2010
).
9.
J. P.
Chu
,
J. C.
Huang
,
J. S. C.
Jang
,
Y. C.
Wang
, and
P. K.
Liaw
,
“Thin film metallic glasses: preparations, properties, and applications,”
JOM
62
(
4
),
19
24
(
2010
).
10.
S.
Hata
,
J.
Sakurai
, and
A.
Shimokohbe
, in 18th IEEE international conference on MEMS 2005 (
2005
), pp.
479
482
.
11.
Y.
Yang
,
J. C.
Ye
,
J.
Lu
,
F. X.
Liu
, and
P. K.
Liaw
,
“Effects of specimen geometry and base material on the mechanical behavior of focused-ion-beam-fabricated metallic-glass micropillars,”
Acta Mater.
57
,
1613
1623
(
2009
).
12.
W. C.
Oliver
and
G. M.
Pharr
,
“An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,”
J. Mater. Res.
7
,
1564
(
1992
).
13.
J. P.
Chu
,
J. S. C.
Jang
,
J. C.
Huang
,
H. S.
Chou
,
Y.
Yang
,
J. C.
Ye
,
Y. C.
Wang
,
J. W.
Lee
,
F. X.
Liu
,
Y. F.
Gao
,
P. K.
Liaw
,
Y. C.
Chen
,
C. M.
Lee
,
C. L.
Li
, and
C.
Rullynai
,
“Thin film metallic glasses: Unique properties and potential applications,”
Thin Solid Films
520
(
16
),
5097
5122
(
2012
).
14.
R.
Saha
and
W. D.
Nix
,
“Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,”
Acta Mater.
50
,
23
(
2002
).
15.
H. S.
Chou
,
J. C.
Huang
,
L. W.
Chang
, and
T. G.
Nieh
,
“Structural relaxation and nanoindentation response in Zr-Cu-Ti amorphous thin films
,
” Appl. Phys. Lett.
93
,
191901
(
2008
).
16.
M. C.
Liu
,
C. J.
Lee
,
Y. H.
Lai
, and
J. C.
Huang
,
“Microscale deformation behavior of amorphous/nanocrystalline multilayered pillars,”
Thin Solid Films
518
,
7295
(
2010
).
17.
H. S.
Chou
,
J. C.
Huang
, and
L. W.
Chang
,
“Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum,”
Surf. Coat. Technol.
205
,
587
(
2010
).
18.
A
Inoue
,
“Stabilization of metallic supercooled liquid and bulk amorphous alloys,”
Acta Mater.
48
,
279
(
2000
).
19.
J. C.
Ye
,
J.
Lu
,
Y.
Yang
, and
P. K.
Liaw
,
“Extraction of bulk metallic-glass yield strengths using tapered micropillars in micro-compression experiments,”
Intermetallics
18
(
3
),
385
393
(
2010
).
20.
W. L.
Johnson
and
K.
Samwer
,
“A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence,”
Phys. Rev. Lett.
95
(
19
),
195501
(
2005
).
21.
M. D.
Uchic
,
P. A.
Shade
, and
D. M.
Dimiduk
,
“Plasticity of micrometer-scale single crystals in compression,”
Annu. Rev. Mater. Res.
39
,
361
386
(
2009
).
22.
C. H.
Hsueh
,
H.
Bei
,
C. T.
Liu
,
E. P.
George
, and
P. F.
Becher
,
“Controlled normal/shear loading and shear fracture in bulk metallic glasses,”
Intermetallics
17
,
802
810
(
2009
).
23.
C. A.
Schuh
and
A. C.
Lund
,
“Atomistic basis for the plastic yield criterion of metallic glass,”
Nature Mater.
2
,
449
452
(
2003
).
24.
M.
Zhao
and
M.
Li
,
“A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses,”
J. Mater. Res.
24
(
8
),
2688
2696
(
2009
).
25.
H.
Kato
,
H.-S. Chen, and A Inoue, “Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses,”
Scr. Mater.
58
,
1106
1109
(
2008
).
26.
L. B.
Freund
and
S.
Suresh
,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
(
Cambridge University Press
,
2003
).
27.
Z. F.
Zhang
,
H.
Zhang
,
X. F.
Pan
,
J.
Das
, and
J.
Eckert
,
“Effect of aspect ratio on the compressive deformation and fracture behaviour of Zr-based bulk metallic glass,”
Philos. Mag. Lett.
85
(
10
),
513
521
(
2005
).
28.
F.
Spaepen
,
“A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,”
Acta Metall.
25
(
4
),
407
415
(
1977
).
29.
Q. H.
Zuo
and
J. K.
Dienes
,
“On the stability of penny-shaped cracks with friction: the five types of brittle behavior,”
Int. J. Solids Struct.
42
,
1309
1326
(
2005
).
30.
C. L.
Chiang
,
J.P.
Chu
,
F. X.
Liu
,
P. K.
Liaw
, and
R. A.
Buchanan
, “
A 200 nm thick glass-forming metallic film for fatigue-property enhancements
,”
Appl. Phys. Lett.
88
,
131902
(
2006
).
31.
A.
Donohue
,
F.
Spaepen
,
R. G.
Hoagland
, and
A.
Misra
,
“Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses,”
Appl. Phys. Lett.
91
(
24
),
241905
(
2007
).
You do not currently have access to this content.