Laser-driven electron beamlines are receiving increasing interest from the particle accelerator community. In particular, the high initial energy, low emittance, and high beam current of the plasma based electron source potentially allow generating much more compact and bright particle accelerators than what conventional accelerator technology can achieve. Using laser-generated particles as injectors for generating beamlines could significantly reduce the size and cost of accelerator facilities. Unfortunately, several features of laser-based particle beams need still to be improved before considering them for particle beamlines and thus enable the use of plasma-driven accelerators for the multiple applications of traditional accelerators. Besides working on the plasma source itself, a promising approach to shape the laser-generated beams is coupling them with conventional accelerator elements in order to benefit from both a versatile electron source and a controllable beam. In this paper, we perform start-to-end simulations to generate laser-driven beamlines using conventional accelerator codes and methodologies. Starting with laser-generated electrons that can be obtained with established multi-hundred TW laser systems, we compare different options to capture and transport the beams. This is performed with the aim of providing beamlines suitable for potential applications, such as free electron lasers. In our approach, we have analyzed which parameters are critical at the source and from there evaluated different ways to overcome these issues using conventional accelerator elements and methods. We show that electron driven beamlines are potentially feasible, but exploiting their full potential requires extensive improvement of the source parameters or innovative technological devices for their transport and capture.

1.
The Future of Accelerator Physics
, edited by
T.
Tajima
(
AIP
,
New York
,
1996
).
2.
See http://www.cern.ch for details about the Large Hadron Collider, its main characteristics and last achievements.
3.
E.
Esarey
 et al.,
Rev. Mod. Phys.
81
(
3
),
1229
(
2009
).
4.
C. G. R.
Geddes
 et al.,
Nature
431
,
535
(
2004
);
[PubMed]
S. P. D.
Mangles
 et al.,
Nature
431
,
538
(
2004
);
[PubMed]
J.
Faure
 et al.,
Nature
431
,
541
(
2004
).
[PubMed]
5.
W. P.
Leemans
 et al.,
Nat. Phys.
2
,
696
(
2006
).
6.
S.
Gordienko
and
A.
Pukhov
,
Phys. Plasmas
12
,
043109
(
2005
).
7.
W.
Lu
 et al.,
Phys. Rev. ST Accel. Beams
10
,
061301
(
2007
).
8.
E.
Brunetti
 et al.,
Phys. Rev. Lett.
105
,
215007
(
2010
).
9.
C. M. S.
Sears
 et al.,
Phys. Rev. ST Accel. Beams
13
,
092803
(
2010
).
10.
C.
Rechatin
 et al.,
Phys. Rev. Lett.
102
,
164801
(
2009
).
11.
A. J.
Gonsalves
 et al.,
Nat. Phys.
7
,
862
(
2011
).
12.
M.
Reiser
,
Theory and Design of Charged Particle Beams
, 2nd ed. (
Wiley VCH
,
Weinheim
), p.
105
.
13.
See http://ilil.ino.it/flame/index.html for details about the main characteristics and last achievements of the 200 TW Ti:Sa FLAME laser system installed at INFN in Frascati.
14.
C.
Benedetti
,
AIP Conf. Proc.
1209
,
11
14
(
2010
).
15.
C.
Benedetti
 et al.,
IEEE Trans. Plasma Sci.
36
(
4
),
1790
S98
(
2008
);
C.
Benedetti
 et al.,
Nucl. Instrum. Methods Phys. Res. A
608
,
S94
S98
(
2009
).
16.
L. M.
Young
, private communication (
2009
).
17.
L. M.
Young
, “
PARMELA
,” Los Alamos National Laboratory Report LA-UR-96-1835 (Revised April. 22,
2003
).
18.
Advances in Solid-State Lasers: Development and Applications
, edited by
M.
Grishin
(
InTech
,
2010
), p.
600
.
19.
M.
Ferrario
 et al.,
Proceedings of FEL08, Gyeongju, Korea
, TUPPH048 (JACoW,
2008
), p.
359
.
20.
21.
K. R.
Crandall
and
D. P.
Rusthoi
, “
TRACE 3D documentation
,” LA-UR-97-886,
1997
.
22.
S.
Becker
 et al.,
Phys. Rev. ST Accel. Beams
12
,
102801
(
2009
).
23.
J. B.
Rosenzweig
 et al., “
RF and magnetic measurements on the SPARC photoinjector and solenoid at UCLA
, in
PAC05 Proceedings, Knoxville, TN
(JACoW,
2005
), p.
2626
.
24.
J.
Schmerge
, “
LCLS gun solenoid design considerations
,” LCLS-TN-05-14,
2005
.
25.
S. A.
Kahn
 et al., “
HTS development for 30-50 T final muon cooling solenoids
,” in
PAC09 Proceedings
,
Vancouver, BC, Canada
,
2009
.
26.
S.
Reiche
, Genesis 1.3 User Manual, Available at: http://genesis.web.psi.ch/.
27.
L.
Palumbo
 et al., “
SPARX-FEL Technical Design Report
,” (
2009
); Available at: http://www.sparx-fel.it.
28.
S.
Kneip
 et al.,
Phys. Rev. ST Accel. Beams
15
,
021302
(
2012
).
29.
S.
Fritzler
 et al.,
Phys. Rev. Lett.
92
(
16
),
165006
(
2004
).
30.
J.
Osterhoff
 et al.,
Phys. Rev. Lett.
101
,
085002
(
2008
).
31.
M.
Fuchs
 et al.,
Nat. Phys.
5
,
1404
(
2009
).
32.
K.
Floettmann
,
Phys. Rev. ST Accel. Beams
6
,
034202
(
2003
).
You do not currently have access to this content.