Theoretical approaches to electrical characterization of two phase systems are mostly limited to the systems where the individual components exhibit the same type of conductivity (pure dielectric or pure conductive systems). In this article, the brick wall geometry is extended to the mixed conductive systems with percolation. Impedance spectroscopy techniques were used for experimental investigation of slurries. Various metal oxide powders and host liquids were analyzed using a wide range of solids loadings. Comparison of experimental results with theoretical predictions shows good fitting of the experimental data. Parameters (the values of permittivity for both phases and percolation threshold) calculated from this fitting match the corresponding values of components of two phase systems. Analysis of both low frequency (less than 10 kHz) as well as high frequency (10 kHz to 1 MHz) responses of impedance spectra allows determining of permittivity of dielectric powders suspended in various liquids. Low frequency response provides better accuracy for systems with high dielectric contrast between components, while high frequency response is more accurate for low contrast systems.

1.
D. S.
McLachlan
,
M.
Blaszkiewscz
, and
R. E.
Newnham
, “
Electrical resistivity of composites
,”
J. Am. Ceram. Soc.
73
(
8
),
2167
2203
(
1990
).
2.
K.
Lal
and
R.
Parshad
, “
The permittivity of heterogeneous mixtures
,”
J. Phys. D: Appl. Phys.
6
,
1363
(
1973
).
3.
L.
Jylha
and
A.
Sihvola
, “
Differential equation for the effective permittivity of random mixture of spheres
,” in EMTS 2007–International URSI Commission B–Electromagnetic Theory Symposium, Ottawa, Canada, 26–28 July
2007
.
4.
D. S.
McLachlan
,
J. H.
Hwang
, and
T. O.
Mason
, “
Evaluating dielectric impedance spectra using effective media theories
,”
J. Electroceram.
5
(
1
),
37
51
(
2000
).
5.
N.
Bonanos
,
B. C. H.
Steele
, and
E. P.
Butler
, “
Applications of impedance spectroscopy
,” in
Impedance Spectroscopy
, 2nd ed., edited by
E.
Barsoukov
and
J.
Ross Macdonald
(
John Wiley & Sons
,
Hoboken, New Jersey
,
2005
), pp.
205
227
.
6.
N. J.
Kidner
,
Z. J.
Homerighaus
,
B. J.
Ingram
,
T. O.
Mason
, and
E. J.
Garboczi
, “
Impedance/dielectric spectroscopy of electroceramics–Part 1: Evaluation of composite models for polycrystalline ceramics
,”
J. Electroceram.
14
,
283
291
(
2005
).
7.
N. J.
Kidner
,
Z. J.
Homerighaus
,
B. J.
Ingram
,
T. O.
Mason
, and
E. J.
Garboczi
, “
Impedance/dielectric spectroscopy of electroceramics–Part 1: Grain shape effects and local properties of polycrystalline ceramics
,”
J. Electroceram.
14
,
293
301
(
2005
).
8.
T.
Ohno
,
D.
Suzuki
,
K.
Ishikawa
,
M.
Horiuchi
,
T.
Matsuda
, and
H.
Suzuki
, “
Size effect for Ba(ZrxTi1x)O3 (x50.05) nano-particles
,”
Ferroelectrics
337
,
25
32
(
2006
).
9.
K. A.
Goswami
, “
Dielectric Properties of Unsintered Barium Titanate
,”
J. Appl. Phys.
40
(
2
),
619
624
(
1969
).
10.
A.
Biswas
,
I. S.
Bayer
,
P. C.
Karulkar
,
A.
Tripathi
,
D. K.
Avasthi
,
M. G.
NortonSzczech
, and
J. B.
Szczech
, “
Nanostructured barium titanate composites for embedded radio frequency applications
,”
Appl. Phys. Lett.
91
(
21
),
212902
(
2007
).
11.
Z.
Dang
,
Y.
Zheng
, and
H.
Xu
, “
Effect of the ceramic particle size on the microstructure and dielectric properties of barium titanate/polystyrene composites
,”
J. Appl. Polym. Sci.
110
(
6
),
3473
3479
(
2008
).
12.
V.
Petrovsky
,
A.
Manohar
, and
F.
Dogan
, “
Dielectric constant of particles determined by impedance spectroscopy
,”
J. Appl. Phys.
100
(
1
),
014102
(
2006
).
13.
V.
Petrovsky
,
T.
Petrovsky
,
S.
Kamlapurkar
, and
F.
Dogan
, “
Characterization of dielectric particles by impedance spectroscopy (part I)
,”
J. Am. Ceram. Soc.
91
(
6
),
1814
(
2008
).
14.
V.
Petrovsky
,
T.
Petrovsky
,
S.
Kamlapurkar
, and
F.
Dogan
, “
Physical modeling and electrodynamic characterization of dielectric slurries by impedance spectroscopy (part 11)
,”
J. Am. Ceram. Soc.
91
(
6
),
1817
1819
(
2008
).
15.
P.
Jasinski
,
V.
Petrovsky
, and
F.
Dogan
, “
Impedance spectroscopy of BaTiO3 cubes suspended in lossy liquids as a physical model of two-phase system
,”
J. Appl. Phys.
108
,
074111
(
2010
).
16.
W. T.
Doyle
, “
Particle clustering and dielectric enhancement in percolating metal-insulator composites
,”
J. Appl. Phys.
78
(
10
),
6165
6169
(
1995
).
17.
V.
Petrovsky
,
P.
Jasinski
, and
F.
Dogan
, “
Effective dielectric constant of two phase dielectric systems
,”
J. Electroceram.
28
,
185
190
(
2012
).
18.
W.
Huebner
,
F. C.
Jang
, and
H. U.
Anderson
, “
Dielectric and electrical properties of BaTiO3 composites
,” in
Multiphase and Composite Ceramics
, edited by
C. G.
Pantano
,
R. E.
Tressler
,
G. L.
Messing
, and
R. E.
Newnham
(
Plenum Publishing Corporation
,
1986
), pp.
433
442
.
19.
S.
Wada
,
H.
Yasuno
,
T.
Hoshina
,
S.-M.
Nam
,
H.
Kakemoto
, and
T.
Tsurumi
, “
Preparation of NM-sized barium titanate fine particles and their powder dielectric properties
,”
Jpn. J. Appl. Phys., Part 1
42
(
9B
)
6188
6195
(
2003
).
20.
S.
Wada
,
T.
Hoshino
,
H.
Yasuno
,
M.
Ohishi
,
H.
Kakemoto
,
T.
Tsurumi
, and
M.
Yashima
, “
Dielectric properties of NM-sized barium titanate fine particles and their size dependence
,”
Ceram. Eng. Sci. Proceed.
26
(
5
)
89
100
(
2005
).
21.
T.
Tsurumi
,
T.
Sekine
,
H.
Kakemoto
,
T.
Hoshina
,
S.-M.
Nam
,
H.
Yasuno
, and
S.
Wada
, “
Evaluation of dielectric permittivity of barium titanate fine powders
,” 2004 MRS Fall Meeting. Materials, integration and packaging issues for high-frequency devices II, 833, G7.5.
Mater. Res. Soc. Sym. Proc.
833
,
243
247
(
2005
).
You do not currently have access to this content.