Using photoelectron spectroscopy, we investigated the energy level alignment at interfaces between the organic n-type semiconductor poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)} [P(NDI2OD-T2] and poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDT:PSS) electrodes with different work function (Φ). The P(NDI2OD-T2) film thickness was varied between monolayer and multilayer (up to 12 nm) coverage. Vacuum level alignment was found for polymer electrode Φ ≤ 5.30 eV, whereas the valence band of P(NDI2OD-T2) becomes Fermi level pinned for higher Φ values. In situ annealing of un-pinned P(NDI2OD-T2) films on electrodes with Φ below 5.3 eV resulted in a transition to the Fermi level pinning regime. This transition is due to an increase of the effective polymer electrode Φ below the semiconductor polymer due to annealing. Pinning the P(NDI2OD-2T) energy levels at the conduction band with a low Φ electrode allowed estimating the charge transport gap of this polymer to be ≥ 1.7 eV.

1.
B.
Bröker
,
R.-P.
Blum
,
J.
Frisch
,
A.
Vollmer
,
O. T.
Hofman
,
R.
Rieger
,
K.
Müllen
,
J. P.
Rabe
,
E.
Zojer
, and
N.
Koch
,
Appl. Phys. Lett.
93
,
243303
(
2008
).
2.
M. A.
Baldo
and
S. R.
Forrest
,
Phys. Rev. B
64
,
085201
(
2001
).
3.
C.
Di
,
G.
Yu
,
Y.
liu
,
X.
Xu
,
Y.
Song
, and
D.
Zhu
,
Appl. Phys. Lett.
89
,
033502
(
2006
).
4.
R.
Steyrleuthner
,
M.
Schubert
,
F.
Jaiser
,
J. C.
Blakesley
,
Z.
Chen
,
A.
Facchetti
, and
D.
Neher
,
Adv. Mater.
22
,
2799
(
2010
).
5.
N.
Koch
,
ChemPhysChem
8
,
1438
(
2007
).
6.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
,
Adv. Mater.
21
,
1450
(
2009
).
7.
B.
Stadlober
,
U.
Haas
,
H.
Gold
,
A.
Haase
,
G.
Jakopic
,
G.
Leising
,
N.
Koch
,
S.
Rentenberger
, and
E.
Zojer
,
Adv. Mater.
17
,
2687
(
2007
).
8.
V. D.
Mihailetchi
,
P. W. M.
Blom
,
J. C.
Hummelen
, and
M. T.
Rispens
,
J. Appl. Phys.
94
,
6849
(
2003
).
9.
M. C.
Scharber
,
D.
Mühlbacher
,
M.
Koppe
,
P.
Denk
,
C.
Waldauf
,
A. J.
Heeger
, and
C. J.
Brabec
,
Adv. Mater.
18
,
789
(
2006
).
10.
P. W. M.
Blom
,
V. D.
Mihailetchi
,
L. J. A.
Koster
, and
D. E.
Markov
,
Adv. Mater.
19
,
1551
(
2007
).
11.
J.
Frisch
,
A.
Vollmer
,
J. P.
Rabe
, and
N.
Koch
,
Org. Electron.
12
,
916
(
2011
).
12.
J.
Hwang
,
E.-G.
Kim
,
J.
Liu
,
J.-L.
Brédas
,
A.
Duggal
, and
A.
Kahn
,
J. Phys. Chem. C
111
,
1378
(
2007
).
13.
A.
Kahn
,
N.
Koch
, and
W.
Gao
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2529
(
2003
).
14.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
15.
N. F.
Mott
,
Proc. R. Soc. London A
171
,
27
(
1939
).
16.
W.
Schottky
,
Phys. Z.
41
,
570
(
1940
).
17.
N.
Hayashi.
H.
Ishii
,
Y.
Ouchi
, and
K.
Seki
,
Synth. Met.
137
,
1377
(
2003
).
18.
H.
Yan
,
Z.
Chen
,
Y.
Zheng
,
C.
Newman
,
J. R.
Quinn
,
F.
Dötz
,
M.
Kastler
, and
A.
Facchetti
,
Nature
457
,
679
(
2009
).
19.
J. R.
Moore
,
S.
Albert-Seifried
,
A.
Rao
,
S.
Massip
,
B.
Watts
,
D. J.
Morgan
,
R. H.
Friend
,
C. R.
McNeill
, and
H.
Sirringhaus
,
Adv. Energy Mater.
1
,
230
(
2011
).
20.
M.
Schubert
,
D.
Dolfen
,
J.
Frisch
,
S.
Roland
,
R.
Steyrleuthner
,
B.
Stiller
,
Z.
Chen
,
U.
Scherf
,
N.
Koch
,
A.
Facchetti
, and
D.
Neher
,
Adv. Energy Mater.
2
,
369
(
2012
).
21.
P. J.
Cumpson
,
Surf. Interface Anal.
31
,
23
34
(
2001
).
22.
T.
Sueyosh
,
H.
Fukagawa
,
M.
Ono
,
S.
Kera
, and
N.
Ueno
,
Appl. Phys. Lett.
95
,
183303
(
2009
).
23.
N.
Koch
,
A.
Vollmer
, and
A.
Elschner
,
Appl. Phys. Lett.
90
,
043512
(
2007
).
24.
I.
Lange
,
J. C.
Blakesley
,
J.
Frisch
,
A.
Vollmer
,
N.
Koch
, and
D.
Neher
,
Phys. Rev. Lett.
106
,
216402
(
2011
).
You do not currently have access to this content.