Precise metallic nanogap structure is fabricated on a glass substrate by using a 30 keV focused Ga ion beam. While investigating the I-V behavior of the nanogap structure, tunneling through the substrate has been found to play a vital role in the electrical transportation process. Substrate breakdown occurs at a certain applied voltage and a metal vapor state is initiated through intense heat generation at the nanogap region. The experimental observation confirms the role of the substrate in the explosion process. Metallic spherical particles are formed during cooling/condensation of the metal vapors or splashing of the liquid droplets showing a wide distribution of size from few tens of nanometers to few microns.

1.
G.
Guisbiers
and
S.
Pereira
,
Nanotechnology
18
,
435710
(
2007
).
2.
S.
Karim
,
M. E.
Toimil-Molares
,
A. G.
Balogh
,
W.
Ensinger
,
T. W.
Cornelius
,
E. U.
Khan
, and
R.
Neumann
,
Nanotechnology
17
,
5954
(
2006
).
3.
N.
Mounet
and
N.
Marzari
,
Phys. Rev. B
71
,
205214
(
2005
).
4.
S.
Strobel
,
R. M.
Hernández
,
A. G.
Hansen
, and
M.
Tornow
,
J. Phys.: Condens. Matter
20
,
374126
(
2008
).
5.
S. H. M.
Jafri
,
T.
Blom
,
K.
Leifer
,
M.
Strømme
,
H.
Löfås
,
A.
Grigoriev
,
R.
Ahuja
, and
K.
Welch
,
Nanotechnology
21
,
435204
(
2010
).
6.
D.
Therriault
,
Nat. Nanotechnol.
2
,
393
(
2007
).
7.
X.
Chen
,
Z.
Guo
,
G.
Yang
,
J.
Li
,
M.
Li
,
J.
Liu
, and
X.
Huang
,
Mater. Today
13
,
28
(
2010
).
8.
P.
Sievilä
,
N.
Chekurov
, and
I.
Tittonen
,
Nanotechnology
21
,
145301
(
2010
).
9.
N. S.
Rajput
,
A.
Banerjee
, and
H. C.
Verma
,
Nanotechnology
22
,
485302
(
2011
).
10.
S. K.
Tripathi
,
N.
Shukla
,
N. S.
Rajput
,
S.
Dhamodaran
, and
V. N.
Kulkarni
,
Micro Nano Lett.
5
,
125
(
2010
).
11.
D.
Litvinov
and
S.
Khizroev
,
Nanotechnology
13
,
179
(
2002
).
12.
R.
Kometani
,
T.
Morita
,
K.
Watanabe
,
T.
Hoshino
,
K.
Kondo
,
K.
Kanda
,
Y.
Haruyama
,
T.
Kaito
,
J.
Fujita
,
M.
Ishida
,
Y.
Ochiai
, and
S.
Matsui
,
J. Vac. Sci. Technol. B
22
,
257
(
2004
).
13.
S.
Bhattacharjee
,
A.
Vartak
, and
V.
Mukherjee
,
Appl. Phys. Lett.
92
,
191503
(
2008
).
14.
T.
Blom
,
K.
Welch
,
M.
Strømme
,
E.
Coronel
, and
K.
Leifer
,
Nanotechnology
18
,
285301
(
2007
).
15.
P. G.
Slade
and
E. D.
Taylor
,
IEEE Trans. Compon. Packag. Technol.
25
,
390
(
2002
).
16.
K. L.
Jensen
,
Phys. Plasmas
6
,
2241
(
1999
).
17.
F.
Charbonnier
,
J. Vac. Sci. Technol. B
16
,
880
(
1998
).
18.
H.
Lo
,
Y.
Li
,
H.
Chao
,
C.
Tsai
, and
F.
Pan
,
Nanotechnology
18
,
475708
(
2007
).
19.
Y.
Lin
,
J.
Bai
, and
Y.
Huang
,
Nano Lett.
9
,
2234
(
2009
).
20.
N. S.
Rajput
,
A. K.
Singh
,
N.
Shukla
, and
V. N.
Kulkarni
,
Int. J. Nanosci.
10
,
7
(
2011
).
21.
H.
Park
,
A. K. L.
Lim
,
A. P.
Alivisatos
,
J.
Park
, and
P. L.
McEuen
,
Appl. Phys. Lett.
75
,
301
(
1999
).
22.
J. F.
Ziegler
,
Nucl. Instrum. Methods B
219/220
,
1027
(
2004
).
23.
A. K.
Singh
,
N. S.
Rajput
,
N.
Shukla
,
S. K.
Tripathi
,
J.
Kumar
, and
V. N.
Kulkarni
,
Nucl. Instrum. Methods B
268
,
3282
(
2010
).
24.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London A
119
,
173
(
1928
).
25.
J.
Bonard
,
M.
Croci
,
I.
Arfaoui
,
O.
Noury
,
D.
Sarangi
, and
A.
Châtelain
,
Diamond Relat. Mater.
11
,
763
(
2002
).
26.
H. M.
Ghassemi
,
C. H.
Lee
,
Y. K.
Yap
, and
R. S.
Yassar
,
Nanotechnology
23
,
105702
(
2012
).
27.
P.
Victor
,
J.
Nagaraju
, and
S. B.
Krupanidhi
,
Semicond. Sci. Technol.
18
,
183
(
2003
).
28.
H. J. V. D.
Bijl
,
The Thermionic Vacuum Tube-Physics and Electronics
(
Wexford College Press
,
2003
), Chap. 5.
29.
R. M.
Langford
,
T. X.
Wang
, and
D.
Ozkaya
,
Microelectron. Eng.
84
,
784
(
2007
).
30.
R. L.
Kurucz
and
B.
Bell
,
Atomic Line Data Kurucz CD-ROM No. 23
(
Smithsonian Astrophysical Observatory
,
Cambridge MA
,
1995
).
You do not currently have access to this content.