We have performed a theoretical ab initio study of interaction between benzene molecules and silicon carbide nanotubes (SiCNTs). Two different scenarios have been examined, (1) benzene molecules adsorbed on the SiCNT surface, and (2) benzene molecules encapsulated by SiCNTs. In order to provide a more general picture, for both systems we have considered several geometries and nanotube (NT) chiralities. The calculations were performed by using the density functional theory within the local density approximation. The suitability of such choice has been discussed. In (1), we find that the benzene adsorption on the SiCNT is an exothermic process, with binding energies between 0.3 and 0.4 eV/molecule, and in (2) we obtained binding energies of ∼0.6 eV/molecule, revealing a preference for the benzene encapsulated systems. For both cases, we verify that the SiCNTs are more reactive than the carbon nanotubes (CNTs). There are no chemical bonds at the benzene–SiCNT interface, and in (1) we observe that the benzene molecule is attached to the NT surface mediated by π–π stacking interactions, similar to the benzene–CNT systems. On the other hand, we find that the encapsulation of benzene molecules becomes no longer exothermic for SiCNTs with diameters smaller than ∼9 Å. Further investigations indicate a barrierless process for the benzene encapsulation through an open edge of SiCNT. We find attractive forces of ∼0.4 nN, and there is a dependence on the atomic configuration of the open edge on the nanotube.

1.
P.
Mélinon
,
B.
Masenelli
,
F.
Tournus
, and
A.
Perez
,
Nat. Mater.
6
,
479
(
2007
).
2.
G.
Kotzar
,
M.
Freas
,
P.
Abel
,
A.
Freischman
,
S.
Roy
,
C.
Zorman
,
J. M.
Moran
, and
J.
Melzak
,
Biomaterials
23
,
2737
(
2002
).
3.
X.-H.
Sun
,
C.-P.
Li
,
W.-K.
Wong
,
N.-B.
Wong
,
C.-S.
Lee
,
S.-T.
Lee
, and
B.-K.
Teo
,
J. Am. Chem. Soc.
124
,
14464
(
2002
).
4.
E.
Borowiak-Palen
,
M. H.
Rummeli
,
T.
Gemming
,
M.
Knupfer
,
K.
Biedermann
,
A.
Lonhardt
, and
T.
Pichler
,
J. Appl. Phys.
97
,
056102
(
2005
).
5.
J. Q.
Hu
,
Y.
Bando
,
J. H.
Zhan
, and
D.
Golberg
,
Appl. Phys. Lett.
85
,
2932
(
2004
).
6.
T.
Taguchi
,
N.
Igawa
, and
H.
Yamamoto
,
J. Am. Ceram. Soc.
88
,
459
(
2005
).
7.
J.
Zhou
,
M.
Zhou
,
Z.
Chen
,
Z.
Zhang
,
C.
Chen
,
R.
Li
,
X.
Gao
, and
E.
Xie
,
Surf. Coat. Technol.
203
,
3219
(
2009
).
8.
M.
Menon
,
E.
Richter
,
A.
Mavrandonakis
,
G.
Froudakis
, and
A. N.
Andriotis
,
Phys. Rev. B
69
,
115322
(
2004
).
9.
M.
Yu
,
C.
Jayanathi
, and
S. Y.
Wu
,
Phys. Rev. B
82
,
075407
(
2010
).
10.
B.
Yan
,
G.
Zhou
,
W.
Dai
,
J.
Wu
, and
B.
Gu
,
Appl. Phys. Lett.
89
,
023104
(
2006
).
11.
J.
Jia
,
S.
Ju
,
D.
Shi
, and
K.
Lin
,
J. Phys. Chem. C
115
,
24347
(
2011
).
12.
R. J.
Baierle
,
P.
Piquini
,
L. P.
Neves
, and
R. H.
Miwa
,
Phys. Rev. B
74
,
155425
(
2006
).
13.
14.
G.
Mpourmpakis
,
G. E.
Froudakis
,
G. P.
Lithoxoos
, and
J.
Samios
,
Nano Lett.
6
,
1581
(
2006
).
15.
R. J.
Baierle
and
R. H.
Miwa
,
Phys. Rev. B
76
,
205410
(
2007
).
16.
Á.
Szabó
and
A.
Gali
,
Phys. Rev. B
80
,
075425
(
2009
).
17.
T.
Takenobu
,
T.
Takano
,
M.
Shiraishi
,
Y.
Murakami
,
M.
Ata
,
H.
Kataura
,
Y.
Achiba
, and
Y.
Iwasa
,
Nat. Mater.
2
,
683
(
2003
).
18.
J.
Lu
,
S.
Nagase
,
D.
Yu
,
H.
Ye
,
R.
Han
,
Z.
Gao
,
S.
Zhang
, and
L.
Peng
,
Phys. Rev. Lett.
93
,
116804
(
2004
).
19.
M. J.
O’Connel
,
E. E.
Eibergen
, and
S. K.
Doorn
,
Nat. Mater.
4
,
412
(
2005
).
20.
F.
Tournus
and
J. C.
Charlier
,
Phys. Rev. B
71
,
165421
(
2005
).
21.
F.
Tournus
,
S.
Latil
,
M. I.
Heggie
, and
J.-C.
Charlier
,
Phys. Rev. B
72
,
75431
(
2005
).
22.
R. G. A.
Veiga
and
R.
Miwa
,
Phys. Rev. B
73
,
245422
(
2006
).
23.
K.
Koga
,
G. T.
Gao
,
H.
Tanaka
, and
X.
Zeng
,
Nature
412
,
802
(
2001
).
24.
R.
Yang
,
T. A.
Hilder
,
S. H.
Chung
, and
A.
Rendell
,
J. Phys. Chem. C
115
,
17255
(
2011
).
25.
R. Q.
Wu
,
M.
Yang
,
Y. H.
Lu
,
Y. P.
Feng
,
Z. G.
Huang
, and
Q. Y.
Wu
,
J. Chem. Phys. C
112
,
15985
(
2008
).
26.
J.
Zhao
and
Y.
Ding
,
J. Chem. Theory Comput.
5
,
1099
(
2009
).
27.
X.
Wang
and
K. M.
Liew
,
J. Phys. Chem. C
115
,
10388
(
2010
).
28.
J.
Zhao
,
B.
Gao
,
Q.
Cai
,
X.
Wang
, and
X.
Wang
,
Theor. Chem. Acc.
129
,
85
(
2011
).
29.
B.
Xiao
,
J.
Zhao
,
Y.
Ding
, and
C.
Sun
,
Surf. Sci.
604
,
1882
(
2010
).
30.
K.
Malek
and
M.
Sahimi
,
J. Chem. Phys.
132
,
014310
(
2010
).
31.
R. A.
Wolkow
,
Ann. Rev. Phys. Chem.
50
,
413
(
1999
).
32.
M. A.
Filler
and
S. F.
Bent
,
Prog. Surf. Sci.
73
,
1
(
2003
).
33.
A.
Star
,
T. R.
Han
,
J. C. P.
Gabriel
,
K.
Bradley
, and
G.
Grüner
,
Nano Lett.
3
,
1421
(
2003
).
34.
X.
Lu
,
X.
Wang
,
Q.
Yuan
, and
Q.
Zhang
,
J. Am. Chem. Soc.
125
,
7923
(
2003
).
35.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
36.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
37.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
38.
Within the SIESTA code, the cutoff radius of the basis set (pseudoatomic orbitals) can be tuned by a single parameter, energy shift. For lower energy shift, we have larger cutoff radii for the atomic orbitals, that is, the basis set has been improved. In the present work, we have considered an energy shift of 0.10 eV to determine the radius cutoff of the pseudoatomic orbitals. Here, we verify the convergence of our total energy results for an energy shift of 0.05 eV.
39.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
40.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
41.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
42.
A.
Tckatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
43.
J.
Charlier
,
X.
Gonze
, and
J.
Michenaud
,
Europhys. Lett.
28
,
403
(
1994
).
44.
L. A.
Girifalco
and
M.
Hodak
,
Phys. Rev. B
65
,
125404
(
2002
).
45.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
46.
C.
Hobbs
,
K.
Kantorovich
, and
J. D.
Gale
,
Surf. Sci.
591
,
45
(
2005
).
47.
C.
Kim
,
Y.
Kim
, and
I.
Ihm
,
Chem. Phys. Lett.
415
,
279
(
2005
).
48.
W.
Orellana
and
S. O.
Vásquez
,
Phys. Rev. B
74
,
125419
(
2006
).
You do not currently have access to this content.