We show a strong relationship between CuPt atomic ordering and misfit dislocation glide plane preference during strain relaxation. A miscut substrate creates an asymmetry in the resolved mismatch stress between {111} glide planes, causing a preference for one glide plane that results in a systematic tilt of the epilayer relative to the substrate. However, a small degree of ordering leads to nearly 100% of dislocation glide on planes opposite to the expected planes from the substrate miscut. This result is explained as a consequence of the asymmetry between {111} glide planes of CuPt-ordered material. Lowering the ordering parameter by changing bulk composition results in a change in glide plane distribution and is accomplished through the formation of new dislocations. Control of the glide plane distribution is therefore possible by controlling the ordering parameter on a vicinal substrate. Knowledge and control of this relaxation mechanism is important for the reduction of threading dislocations in lattice-mismatched devices.

1.
J. E.
Ayers
,
S. K.
Ghandhi
, and
L. J.
Schowalter
,
J. Cryst. Growth
113
,
430
(
1991
).
2.
P. M.
Mooney
,
F. K.
LeGoues
,
J.
Tersoff
, and
J. O.
Chu
,
J. Appl. Phys.
75
,
3968
(
1993
).
3.
F. K.
LeGoues
,
P. M.
Mooney
, and
J. O.
Chu
,
Appl. Phys. Lett.
62
,
140
(
1993
).
4.
F. K.
LeGoues
,
P. M.
Mooney
, and
J.
Tersoff
,
Phys. Rev. Lett.
71
,
396
(
1993
).
5.
R. S.
Goldman
,
K. L.
Kavanagh
,
H. H.
Wieder
,
S. N.
Ehrlich
, and
R. M.
Feenstra
,
J. Appl. Phys.
83
,
5137
(
1998
).
6.
T. J.
Grassman
,
A. M.
Carlin
,
K.
Swaminathan
,
C.
Ratcliff
,
J.
Grandal
,
L.
Yang
,
M. J.
Mills
, and
S. A.
Ringel
, in Proceedings of the 37th IEEE PVSC, Seattle, WA (
2011
).
7.
T.
Suzuki
and
A.
Gomyo
,
J. Cryst. Growth
99
,
60
(
1990
).
8.
G. B.
Stringfellow
, in
Spontaneous Ordering in Semiconductor Alloys
, edited by
A.
Mascarenhas
(
Kluwer Academic/Plenum
,
2002
), Chap. 3.
9.
J. E.
Bernard
,
R. G.
Dandrea
,
L. G.
Ferreira
,
S.
Froyen
,
S.-H.
Wei
, and
A.
Zunger
,
Appl. Phys. Lett.
56
,
731
(
1989
).
10.
P.
Gavrilovic
,
F. P.
Dabkowski
,
K.
Meehan
,
J. E.
Williams
,
W.
Stutius
,
K. C.
Hsieh
,
N.
Holonyak
,
M. A.
Shahid
, and
S.
Mahajan
,
J. Cryst. Growth
93
,
426
(
1988
).
11.
L.
Toben
,
T.
Hannappel
,
K.
Moller
,
H. J.
Crawack
,
C.
Pettenkofer
, and
F.
Willig
,
Surf. Sci.
494
,
L755
(
2001
).
12.
L.
Li
,
B. K.
Han
,
Q.
Fu
, and
R. F.
Hicks
,
Phys. Rev. Lett.
82
(
9
),
1879
(
1999
).
13.
I. G.
Batyrev
,
W. E.
McMahon
,
S. B.
Zhang
,
J. M.
Olson
, and
S.-H.
Wei
,
Phys. Rev. Lett.
94
,
096101
(
2005
).
14.
J. K.
Shurtleff
,
R. T.
Lee
,
C. M.
Fetzer
, and
G. B.
Stringfellow
,
Appl. Phys. Lett.
75
,
1914
(
1999
).
15.
R.
Wirth
,
H.
Seitz
,
M.
Geiger
,
F.
Scholz
,
A.
Hangleiter
,
A.
Muhe
, and
F.
Phillipp
,
Appl. Phys. Lett.
71
,
2127
(
1997
).
16.
Y. E.
Ihm
,
N.
Otsuka
,
J.
Klem
, and
H.
Morkoc
,
Appl. Phys. Lett.
51
,
2013
(
1987
).
17.
A. G.
Norman
,
R.
France
, and
A. J.
Ptak
,
J. Vac. Sci. Technol. B
29
,
03C121
(
2011
).
18.
C. S.
Baxter
,
W. M.
Stobbs
, and
C. J.
Gibbings
,
Philos. Mag. Lett.
67
,
59
(
1993
).
19.
E.
Spiecker
,
M.
Seibt
,
W.
Schroter
,
R.
Winterhoff
, and
F.
Scholz
,
Appl. Surf. Sci.
188
,
61
(
2002
).
20.
S. P.
Ahrenkiel
,
M. W.
Wanlass
,
J. J.
Carapella
,
R. K.
Ahrenkiel
,
S. W.
Johnston
, and
L. M.
Gedvilas
,
Sol. Energy Mater. Sol. Cells
91
,
908
(
2007
).
21.
H.
Nagai
,
J. Appl. Phys.
45
,
3789
(
1974
).
22.
F.
Riesz
,
J. Appl. Phys.
79
,
4111
(
1996
).
23.
T. Y.
Seong
,
A. G.
Norman
,
G. R.
Booker
, and
A. G.
Cullis
,
J. Appl. Phys.
75
,
7852
(
1994
).
24.
E. A.
Fitzgerald
,
A. Y.
Kim
,
M. T.
Currie
,
T. A.
Langdo
,
G.
Taraschi
, and
M. T.
Bulsara
,
Mater. Sci. Eng. B
67
,
53
(
1999
).
You do not currently have access to this content.